
Zero to JupyterHub
Release 0.3.1

Chris Holdgraf

Mar 16, 2022

CONTENTS

1 Getting started with JupyterHub 3
1.1 Deployment Guide . 3
1.2 Extending and Customizing JupyterHub . 3
1.3 Dependencies for Deploying a JupyterHub Instance . 3

2 Questions or Suggestions? 5

3 Creating a Kubernetes Cluster 7
3.1 Setting up Kubernetes on Google Cloud . 7
3.2 Setting up Kubernetes on Microsoft Azure Container Service (ACS) 8
3.3 Next Step . 9

4 Setting up Helm 11
4.1 Installation . 11
4.2 Initialization . 11
4.3 Next Step . 11

5 Setting up JupyterHub 13
5.1 Prepare configuration file . 13
5.2 Install JupyterHub . 14

6 Turning Off JupyterHub and Computational Resources 15

7 Extending your JupyterHub setup 17
7.1 Applying configuration changes . 17
7.2 Using an existing image . 17
7.3 Setting memory and CPU guarantees / limits for your users . 18
7.4 Extending your software stack with s2i . 18
7.5 Pre-populating $HOME directory with notebooks when using Persistent Volumes 20
7.6 Authenticating with OAuth2 . 20
7.7 Full Example of Google OAuth2 . 21
7.8 Expanding and contracting the size of your cluster . 21

8 Tools used in a JupyterHub Deployment 23
8.1 Cloud Computing Providers . 23
8.2 Container Technology . 23
8.3 Kubernetes . 24
8.4 Helm . 26
8.5 JupyterHub . 26

9 Resource management 29

i

10 Estimating costs 31
10.1 Computational Resources . 31
10.2 Users . 31
10.3 User usage patterns . 31
10.4 Examples . 32

11 Backups 33

12 Upgrading 35

13 Security Considerations 37

14 Troubleshooting 39
14.1 FAQ - General . 39
14.2 Common error messages . 39
14.3 Investigating Issues . 40

15 Glossary 41

16 Additional resources 43

ii

Zero to JupyterHub, Release 0.3.1

JupyterHub is a tool that allows you to quickly utilize cloud computing infrastructure to manage a hub that enables
users to interact remotely with a computing environment that you specify. JupyterHub offers a useful way to standard-
ize the computing environment of a group of people (e.g., for a class of students), as well as allowing people to access
the hub remotely.

This growing collection of information will help you set up your own JupyterHub instance. It is in an early stage, so
the information and tools may change quickly. If you see anything that is incorrect or have any questions, feel free to
reach out at the issues page.

Creating your JupyterHub

CONTENTS 1

https://github.com/jupyterhub/jupyterhub
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues

Zero to JupyterHub, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

GETTING STARTED WITH JUPYTERHUB

The goal of JupyterHub is to create custom computing environments that can be accessed remotely (e.g., at a specific
URL) by multiple users.

This guide acts as an assistant to guide you through the process of setting up your JupyterHub deployment. It helps
you connect and configure the following things:

• A cloud provider such Google Cloud, Microsoft Azure, Amazon EC2, and others

• Kubernetes to manage resources on the cloud

• Helm to configure and control Kubernetes

• Docker to use containers that standardize computing environments

• JupyterHub to manage users and deploy Jupyter notebooks

You already are well on your way to understanding what it means (procedurally) to deploy Jupyterhub.

1.1 Deployment Guide

We’ve put together a short walkthrough going from having nothing set up to a complete deployment of jupyterhub on
Google Cloud. If you want to follow that comprehensive walkthrough, the next step on your journey is to create a
Kubernetes cluster on Google Cloud.

1.2 Extending and Customizing JupyterHub

If you’d like to know how to expand and customize your jupyterhub setup, such as increasing the computational
resources available to users or changing authentication services, check out Extending your JupyterHub setup.

1.3 Dependencies for Deploying a JupyterHub Instance

For a more extensive description of the tools and services that JupyterHub depends upon, see our Tools used in a
JupyterHub Deployment page.

3

Zero to JupyterHub, Release 0.3.1

4 Chapter 1. Getting started with JupyterHub

CHAPTER

TWO

QUESTIONS OR SUGGESTIONS?

If you have questions or suggestions, please reach out at our issues page on GitHub.

5

https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues

Zero to JupyterHub, Release 0.3.1

6 Chapter 2. Questions or Suggestions?

CHAPTER

THREE

CREATING A KUBERNETES CLUSTER

Kubernetes’ documentation describes the many ways to set up a cluster. Here, we shall provide quick instructions for
the most painless and popular ways of getting setup in various cloud providers:

• Google Cloud

• Microsoft Azure

• Amazon EC2

• Red Hat OpenShift

• Others

3.1 Setting up Kubernetes on Google Cloud

Google Container Engine (confusingly abbreviated to GKE) is the simplest and most common way of setting up a
Kubernetes Cluster. You may be able to receive free credits for trying it out. You will need to connect your credit card
or other payment method to your google cloud account.

1. Go to https://console.cloud.google.com.

2. Click the hamburger icon in the top left (the icon has three horizontal lines in one button). Go to “Billing” then
“Payment Methods”, and make sure you have a credit card linked to the account. (You may also receive $300 in
trial credits.)

3. Install and initialize the gcloud command-line tools. These tools send commands to Google Cloud and lets you
do things like create and delete clusters.

• Go to the gcloud downloads page to download and install the gcloud SDK.

• See the gcloud documentation for more information on the gcloud SDK.

• Install kubectl, which is a tool for controlling kubernetes. From the terminal, enter:

gcloud components install kubectl

4. Create a Kubernetes cluster on Google Cloud, by typing in the following command:

gcloud container clusters create <YOUR_CLUSTER> \
--num-nodes=3 \
--machine-type=n1-standard-2 \
--zone=us-central1-b

where:

• --num-nodes specifies how many computers to spin up. The higher the number, the greater the cost.

7

https://kubernetes.io/docs/setup/pick-right-solution/
https://cloud.google.com/container-engine/
https://cloud.google.com/free/
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/

Zero to JupyterHub, Release 0.3.1

• --machine-type specifies the amount of CPU and RAM in each node. There is a variety of types to
choose from. Picking something appropriate here will have a large effect on how much you pay - smaller
machines restrict the max amount of RAM each user can have access to but allow more fine-grained
scaling, reducing cost. The default (n1-standard-2) has 2CPUs and 7.5G of RAM each, and might not be
a good fit for all use cases!

• --zone specifies which data center to use. Pick something that is not too far away from your users. You
can find a list of them here.

5. To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

3.2 Setting up Kubernetes on Microsoft Azure Container Service
(ACS)

Note: This is an alpha work-in-progress - please do not use in production! Help from people with more Azure
experience would be highly welcome :)

1. Install and initialize the Azure command-line tools, which send commands to Azure and let you do things like
create and delete clusters.

• Go to the azure-cli github repo to download and install the azure-cli tools.

• See the az documentation for more information on using the az tool with the Azure Container Service.

2. Authenticate the az tool so it may access your Azure account:

az login

3. Specify a Azure resource group, and create one if it doesn’t already exist:

export RESOURCE_GROUP=<YOUR_RESOURCE_GROUP>
export LOCATION=<YOUR_LOCATION>
az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

where:

• --name specifies your Azure resource group. If a group doesn’t exist, az will create it for you.

• --location specifies which computer center to use. To reduce latency, choose a zone closest to
whoever is sending the commands. View available zones via az account list-locations.

5. Install kubectl, a tool for controlling Kubernetes:

az acs kubernetes install-cli

6. Create a Kubernetes cluster on Azure, by typing in the following commands:

export CLUSTER_NAME=<YOUR_CLUSTER_NAME>
export DNS_PREFIX=<YOUR_PREFIX>
az acs create --orchestrator-type=kubernetes \

--resource-group=${RESOURCE_GROUP} \
(continues on next page)

8 Chapter 3. Creating a Kubernetes Cluster

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/regions-zones/regions-zones#available
https://github.com/Azure/azure-cli
https://docs.microsoft.com/en-us/cli/azure/acs
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups

Zero to JupyterHub, Release 0.3.1

(continued from previous page)

--name=${CLUSTER_NAME} \
--dns-prefix=${DNS_PREFIX}

7. Authenticate kubectl:

az acs kubernetes get-credentials \
--resource-group=${RESOURCE_GROUP} \
--name=${CLUSTER_NAME}

where:

• --resource-group specifies your Azure resource group.

• --name is your ACS cluster name.

• --dns-prefix is the domain name prefix for the cluster.

8. To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

3.3 Next Step

Now that you have a Kubernetes cluster running, it is time to set up helm.

3.3. Next Step 9

Zero to JupyterHub, Release 0.3.1

10 Chapter 3. Creating a Kubernetes Cluster

CHAPTER

FOUR

SETTING UP HELM

Helm, the package manager for Kubernetes, is a useful tool to install, upgrade and manage applications on a Kuber-
netes cluster. We will be using Helm to install and manage JupyterHub on our cluster.

4.1 Installation

The simplest way to install helm is to run Helm’s installer script at a terminal:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get |
→˓bash

Alternative methods for helm installation exist if you prefer to install without using the script.

4.2 Initialization

After installing helm on your machine, initialize helm on your Kubernetes cluster. At the terminal, enter:

helm init

This command only needs to run once per Kubernetes cluster.

4.3 Next Step

Congratulations. Helm is now set up. The next step is to install JupyterHub!

11

https://helm.sh/
https://github.com/kubernetes/helm/blob/master/docs/install.md

Zero to JupyterHub, Release 0.3.1

12 Chapter 4. Setting up Helm

CHAPTER

FIVE

SETTING UP JUPYTERHUB

Now that we have a Kubernetes cluster and helm setup, we can begin setting up a JupyterHub.

5.1 Prepare configuration file

This step prepares a configuration file (config file). We will use the YAML file format to specify JupyterHub’s config-
uration.

It’s important to save the config file in a safe place. The config file is needed for future changes to JupyterHub’s
settings.

For the following steps, use your favorite code editor. We’ll use the nano editor as an example.

1. Create a file called config.yaml. Using the nano editor, for example, entering nano config.yaml at the
terminal will start the editor and open the config file.

2. Create two random hex strings to use as security tokens. Run these two commands (they’re the same command
but run them twice) in a terminal:

openssl rand -hex 32
openssl rand -hex 32

Copy the output each time, we’ll use these hex strings in the next step.

3. Insert these lines into the config.yaml file. When editing YAML files, use straight quotes and spaces and
avoid using curly quotes or tabs. Substitute each occurrence of RANDOM_STRING_N below with the output of
openssl rand -hex 32. The random hex strings are tokens that will be used to secure your JupyterHub
instance (make sure that you keep the quotation marks):

hub:
output of first execution of 'openssl rand -hex 32'
cookieSecret: "RANDOM_STRING_1"

token:
output of second execution of 'openssl rand -hex 32'
proxy: "RANDOM_STRING_2"

For example:

hub:
cookieSecret: "cb0b45df678709c5cc780ed73690898f7ba0659902f996017296143976ffb97c"

token:
proxy: "712c4c6c0e78c6c745cfb126f5bbc4b9ba763c78b4bba5797e2eaf508ac99475"

4. Save the config.yaml file. If using the nano editor, hit Ctrl-X and make sure to answer ‘yes’ when it asks
you to save.

13

create-k8s-cluster.html
setup-helm.html
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/GNU_nano

Zero to JupyterHub, Release 0.3.1

5.2 Install JupyterHub

1. Let’s use helm to create the instances that you configured with the config.yaml file. Run this command
from the directory that contains the config.yaml file to spin up JupyterHub:

helm install https://github.com/jupyterhub/helm-chart/releases/download/v0.3.1/
→˓jupyterhub-v0.3.1.tgz \

--name=<YOUR_RELEASE_NAME> \
--namespace=<YOUR_NAMESPACE> \
-f config.yaml

where:

• --name is an identifier used by helm to refer to this deployment. You need it when you are changing the
configuration of this install or deleting it. Use something descriptive that you will easily remember. For a
class called data8 you might wish set the name to data8-jupyterhub. In the future you can find out the
name by using helm list.

• --namespace is an identifier used by Kubernetes (among other things) to identify a particular applica-
tion that might be running on a single Kubernetes cluster. You can install many applications into the same
Kubernetes cluster, and each instance of an application is usually separated by being in its own namespace.
You’ll need the namespace identifier for performing any commands with kubectl.

We recommend providing the same value to --name and --namespace for now to avoid too much confusion,
but advanced users of Kubernetes and helm should feel free to use different values.

Note: If you get a release named <YOUR_CHART> already exists error, then you should delete
this helm-chart by running helm delete --purge <YOUR_CHART>. Then reinstall by repeating this
step.

2. While Step 1 is running, you can see the pods being created by entering in a different terminal:

kubectl --namespace=<YOUR_NAMESPACE> get pod

3. Wait for the hub and proxy pod to begin running.

4. You can find the IP to use for accessing the JupyterHub with:

kubectl --namespace=<YOUR_NAMESPACE> get svc

The external IP for the proxy-public service should be accessible in a minute or two.

5. To use JupyterHub, enter the external IP for the proxy-public service in to a browser. JupyterHub is running
with a default dummy authenticator so entering any username and password combination will let you enter the
hub.

Congratulations! Now that you have JupyterHub running, you can extend it in many ways. You can use a pre-built
image for the user container, build your own image, configure different authenticators, and more!

14 Chapter 5. Setting up JupyterHub

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
extending-jupyterhub.html

CHAPTER

SIX

TURNING OFF JUPYTERHUB AND COMPUTATIONAL RESOURCES

When you are done with your hub, you should delete it so you are no longer paying money for it.

1. First, delete the namespace the hub was installed in. This deletes any disks that may have been created to store
user’s data, and any IP addresses that may have been provisioned.

kubectl delete namespace <your-namespace>

2. Next, you should delete the kubernetes cluster. You can list all the clusters you have.

gcloud container clusters list

You can then delete the one you want.

gcloud container clusters delete <CLUSTER-NAME> --zone=<CLUSTER-ZONE>

3. Double check to make sure all the resources are now deleted, since anything you have not deleted will cost you
money! You can check the web console (make sure you are in the right project and account!) to make sure
everything has been deleted.

At a minimum, check the following under the Hamburger (left top corner) menu:

1. Compute Engine -> Disks

2. Container Engine

3. Networking -> Load Balancing

These might take several minutes to clear up, but they shouldn’t have anything related to your JupyterHub cluster
after you have deleted the cluster.

Customization Guide

JupyterHub can be configured and customized to fit a variety of deployment requirements. This guide helps outline
how to customize and extend a JupyterHub deployment.

15

https://console.cloud.google.com

Zero to JupyterHub, Release 0.3.1

16 Chapter 6. Turning Off JupyterHub and Computational Resources

CHAPTER

SEVEN

EXTENDING YOUR JUPYTERHUB SETUP

The helm chart used to install JupyterHub has a lot of options for you to tweak. This page lists some of the most
common changes.

7.1 Applying configuration changes

The general method is:

1. Make a change to the config.yaml

2. Run a helm upgrade:

helm upgrade <YOUR_RELEASE_NAME> https://github.com/jupyterhub/helm-chart/
→˓releases/download/v0.3/jupyterhub-v0.3.tgz -f config.yaml

Where <YOUR_RELEASE_NAME> is the parameter you passed to --name when installing jupyterhub with
helm install. If you don’t remember it, you can probably find it by doing helm list.

3. Wait for the upgrade to finish, and make sure that when you do kubectl
--namespace=<YOUR_NAMESPACE> get pod the hub and proxy pods are in Ready state. Your
configuration change has been applied!

7.2 Using an existing image

It’s possible to build your JupyterHub deployment off of a pre-existing Docker image. To do this, you need to find an
existing image somewhere (such as DockerHub), and configure your installation to use it.

For example, UC Berkeley’s Data8 Program publishes the image they are using on Dockerhub. To instruct JupyterHub
to use this image, simply add this to your config.yaml file:

singleuser:
image:

name: berkeleydsep/singleuser-data8
tag: v0.1

You can then apply the change to the config as usual.

17

setup-jupyterhub.html#install-jupyterhub
https://hub.docker.com/r/berkeleydsep/singleuser-data8

Zero to JupyterHub, Release 0.3.1

7.3 Setting memory and CPU guarantees / limits for your users

Each user on your JupyterHub gets a slice of memory and CPU to use. There are two ways to specify how much users
get to use: resource guarantees and resource limits.

A resource guarantee means that all users will have at least this resource available at all times, but they may be given
more resources if they’re available. For example, if users are guaranteed 1G of RAM, users can technically use more
than 1G of RAM if these resources aren’t being used by other users.

A resource limit sets a hard limit on the resources available. In the example above, if there were a 1G memory limit,
it would mean that users could use no more than 1G of RAM, no matter what other resources are being used on the
machines.

By default, each user is guaranteed 1G of RAM. All users have at least 1G, but they can technically use more if it
is available. You can easily change the amount of these resources, and whether they are a guarantee or a limit, by
changing your config.yaml file. This is done with the following structure.

singleuser:
memory:

limit: 1G
guarantee: 1G

This sets a memory limit and guarantee of 1G. Kubernetes will make sure that each user will always have access to
1G of RAM, and requests for more RAM will fail (your kernel will usually die). You can set the limit to be higher
than the guarantee to allow some users to use larger amounts of RAM for a very short-term time (e.g. when running a
single, short-lived function that consumes a lot of memory).

Note: Remember apply the changes after changing your config.yaml file!

7.4 Extending your software stack with s2i

s2i, also known as Source to Image, lets you quickly convert a GitHub repository into a Docker image that we can use
as a base for your JupyterHub instance. Anything inside the GitHub repository will exist in a user’s environment when
they join your JupyterHub. If you include a requirements.txt file in the root level of your of the repository, s2i
will pip install each of these packages into the Docker image to be built. Below we’ll cover how to use s2i to
generate a Docker image and how to configure JupyterHub to build off of this image.

Note: For this section, you’ll need to install s2i and docker.

1. Download s2i. This is easily done with homebrew on a mac. For linux and Windows it entails a couple of quick
commands that you can find in the links below:

• On OSX: brew install s2i

• On Linux and Windows: follow these instructions

2. Download and start Docker. You can do this by downloading and installing Docker at this link. Once you’ve
started Docker, it will show up as a tiny background application.

3. Create (or find) a GitHub repository you want to use. This repo should have all materials that you want
your users to access. In addition you can include a requirements.txt file that has one package per line.
These packages should be listed in the same way that you’d install them using pip install. You should
also specify the versions explicitly so the image is fully reproducible. E.g.:

18 Chapter 7. Extending your JupyterHub setup

https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image#installation
https://store.docker.com/search?offering=community&platform=desktop%2Cserver&q=&type=edition

Zero to JupyterHub, Release 0.3.1

numpy==1.12.1
scipy==0.19.0
matplotlib==2.0

4. Use s2i to build your Docker image. s2i uses a template in order to know how to create the Docker image. We
have provided one at the url in the commands below. Run this command:

s2i build --exclude "" <git-repo-url> jupyterhub/singleuser-builder-venv-3.5:v0.
→˓1.5 gcr.io/<project-name>/<name-of-image>:<tag>

this effectively says s2i, build `<this repository>` to a Docker image by using `<this template>` and call the
image `<this>`. The –exclude “” ensures that all files are included in the container (e.g. .git directory).

Note:

• The project name should match your google cloud project’s name.

• Don’t use underscores in your image name. Other than this it can be anything memorable. This is a
bug that will be fixed soon.

• The tag should be the first 6 characters of the SHA in the GitHub commit for the image to build
from.

5. Push our newly-built Docker image to the cloud. You can either push this to Docker Hub, or to the gcloud
docker repository. Here we’ll push to the gcloud repository:

gcloud docker -- push gcr.io/<project-name>/<image-name>:<tag>

6. Edit the JupyterHub configuration to build from this image. We do this by editing the config.yaml file
that we originally created to include the jupyter hashes. Edit config.yaml by including these lines in it:

singleuser:
image:
name: gcr.io/<project-name>/<image-name>
tag: <tag>

7. Tell helm to update JupyterHub to use this configuration. Using the normal method to apply the change to
the config.

8. Restart your notebook if you are already logging in If you already have a running JupyterHub session, you’ll
need to restart it (by stopping and starting your session from the control panel in the top right). New users won’t
have to do this.

9. Enjoy your new computing environment! You should now have a live computing environment built off of the
Docker image we’ve created.

Note: The contents of your GitHub repository might not show up if you have enabled persistent storage.
Disable persistent storage if you want them to show up!

7.4. Extending your software stack with s2i 19

Zero to JupyterHub, Release 0.3.1

7.5 Pre-populating $HOME directory with notebooks when using Per-
sistent Volumes

By default, Persistent Volumes are used, so if you would like to include the contents of the GitHub repository in the
$HOME directory (e.g. all of the *.ipynb files), then edit config.yaml include these lines in it:

singleuser:
lifecycleHooks:

postStart:
exec:
command: ["/bin/sh", "-c", "test -f $HOME/.copied || cp -Rf /srv/app/

→˓src/. $HOME/; touch $HOME/.copied"]

Note that this will only copy the contents of the directory to $HOME once - the first time the user logs in. Further
updates will not be reflected. There is work in progress for making this better.

7.6 Authenticating with OAuth2

JupyterHub’s oauthenticator has support for enabling your users to authenticate via a third-party OAuth provider,
including GitHub, Google, and CILogon.

Follow the service-specific instructions linked on the oauthenticator repository to generate your JupyterHub instance’s
OAuth2 client ID and client secret. Then declare the values in the helm chart (config.yaml).

Here are example configurations for two common authentication services. Note that in each case, you need to get the
authentication credential information before you can configure the helmchart for authentication.

Google

For more information see the full example of Google OAuth2 in the next section.

auth:
type: google
google:
clientId: "yourlongclientidstring.apps.googleusercontent.com"
clientSecret: "adifferentlongstring"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
hostedDomain: "youruniversity.edu"
loginService: "Your University"

GitHub

auth:
type: github
github:
clientId: "y0urg1thubc1ient1d"
clientSecret: "an0ther1ongs3cretstr1ng"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

20 Chapter 7. Extending your JupyterHub setup

https://github.com/jupyterhub/oauthenticator
https://github.com/jupyterhub/oauthenticator

Zero to JupyterHub, Release 0.3.1

7.7 Full Example of Google OAuth2

If your institution is a G Suite customer that integrates with Google services such as Gmail, Calendar, and Drive, you
can authenticate users to your JupyterHub using Google for authentication.

Note: Google requires that you specify a fully qualified domain name for your hub rather than an IP address.

1. Log in to the Google API Console.

2. Select a project > Create a project. . . and set ‘Project name’. This is a short term that is only displayed in the
console. If you have already created a project you may skip this step.

3. Type “Credentials” in the search field at the top and click to access the Credentials API.

4. Click “Create credentials”, then “OAuth client ID”. Choose “Application type” > “Web application”.

5. Enter a name for your JupyterHub instance. You can give it a descriptive name or set it to be the hub’s hostname.

6. Set “Authorized JavaScript origins” to be your hub’s URL.

7. Set “Authorized redirect URIs” to be your hub’s URL followed by “/hub/oauth_callback”. For example, http:
//example.com/hub/oauth_callback.

8. When you click “Create”, the console will generate and display a Client ID and Client Secret. Save these values.

9. Type “consent screen” in the search field at the top and click to access the OAuth consent screen. Here you will
customize what your users see when they login to your JupyterHub instance for the first time. Click Save when
you are done.

10. In your helm chart, create a stanza that contains these OAuth fields:

auth:
type: google
google:
clientId: "yourlongclientidstring.apps.googleusercontent.com"
clientSecret: "adifferentlongstring"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
hostedDomain: "youruniversity.edu"
loginService: "Your University"

The ‘callbackUrl’ key is set to the authorized redirect URI you specified earlier. Set ‘hostedDomain’ to your insti-
tution’s domain name. The value of ‘loginService’ is a descriptive term for your institution that reminds your users
which account they are using to login.

7.8 Expanding and contracting the size of your cluster

You can easily scale up or down your cluster’s size to meet usage demand or to save cost when the cluster is not being
used. Use the resize command and provide a new cluster size as a command line option --size:

gcloud container clusters resize \
<YOUR-CLUSTER-NAME> \
--size <NEW-SIZE> \
--zone <YOUR-CLUSTER-ZONE>

To display the cluster’s name, zone, or current size, use the command gcloud container clusters list.

7.7. Full Example of Google OAuth2 21

https://gsuite.google.com
https://console.developers.google.com
http://example.com/hub/oauth_callback
http://example.com/hub/oauth_callback

Zero to JupyterHub, Release 0.3.1

Note: When organizing and running a workshop, resizing a cluster gives you a way to save cost and prepare Jupyter-
Hub before the event. For example:

• One week before the workshop: You can create the cluster, set everything up, and then resize the cluster to
zero nodes to save cost.

• On the day of the workshop: You can scale the cluster up to a suitable size for the workshop. This workflow
also helps you avoid scrambling on the workshop day to set up the cluster and JupyterHub.

• After the workshop: The cluster can be deleted.

22 Chapter 7. Extending your JupyterHub setup

CHAPTER

EIGHT

TOOLS USED IN A JUPYTERHUB DEPLOYMENT

JupyterHub is meant to connect with many tools in the world of cloud computing and container technology. This page
describes these tools in greater detail in order to provide some more contextual information.

8.1 Cloud Computing Providers

This is whatever will run the actual computation. Generally it means a company, university server, or some other orga-
nization that hosts computational resources that can be accessed remotely. JupyterHub will run on these computational
resources, meaning that users will also be operating on these resources if they’re interacting with your JupyterHub.

They provide the following things:

• Computing

• Disk space

• Networking (both internal and external)

• Creating, resizing, and deleting clusters

Some of these organizations are companies (e.g., Google), though JupyterHub will work fine with university clusters
or custom cluster deployments as well. For these materials, any cluster with Kubernetes installed will work with
JupyterHub.

More information about setting up accounts services with cloud providers can be found here.

8.2 Container Technology

Container technology is essentially the idea of bundling all of the necessary components to run a piece of software.
There are many ways to do this, but one that we’ll focus on is called Docker. Here are the main concepts of Docker:

8.2.1 Container Image

Container images contain the dependencies required to run your code. This includes everything, all the way down to
the operating system itself. It also includes things like the filesystem on which your code runs, which might include
data etc. Containers are also portable, meaning that you can exactly recreate the computational environment to run
your code on almost any machine.

In Docker, images are described as layers, as in layers of dependencies. For example, say you want to build a container
that runs scikit-learn. This has a dependency on Python, so you have two layers: one for python, and another that
inherits the python layer and adds the extra piece of scikit-learn. Moreover, that base python layer needs an operating
system to run on, so now you have three layers: ubuntu -> python -> scikit-learn. You get the idea. The beauty of this

23

http://cloud.google.com/
create-k8s-cluster.html

Zero to JupyterHub, Release 0.3.1

is that it means you can share base layers between images. This means that if you have many different images that all
require ubuntu, you don’t need to have many copies of ubuntu lying around.

Images can be created from many things. If you’re using Docker, the basic way to do this is with a Dockerfile. This is
essentially a list of instructions that tells Docker how to create an image. It might tell Docker which base layers you
want to include in an image, as well as some extra dependencies that you need in the image. Think of it like a recipe
that tells Docker how to create an image.

8.2.2 Containers

You can “run” a container image, and it creates a container for you. A container is a particular instantiation of a
container image. This means that it actually exists on a computer. It is a self-contained computational environment
that is constructed according to the layers that are inside of the Container Image. However, because it is now running
on the computer, it can do other useful things like talk to other Docker containers or communicate via the internet.

8.3 Kubernetes

Kubernetes is a service that runs on cloud infrastructures. It provides a single point of contact with the machinery of
your cluster deployment, and allows a user to specify the computational requirements that they need (e.g., how many
machines, how many CPUs per machine, how much RAM). Then, it handles the resources on the cluster and ensures
that these resources are always available. If something goes down, kubernetes will try to automatically bring it back
up.

Kubernetes can only manage the computing resources that it is given. This means that it generally can not create new
resources on its own (with the exception of disk space).

The following sections describe some objects in Kubernetes that are most relevant for JupyterHub.

8.3.1 Processes

Are any program that is running on a machine. For example, a Jupyter Notebook creates several processes that handle
the execution of code and the display in the browser. This isn’t technically a Kubernetes object, since literally any
computer has processes that run on it, but Kubernetes does keep track of running processes in order to ensure that they
remain running if needed.

8.3.2 Pods

Pods are essentially a collection of one or more containers that run together. You can think of them as a way of
combining containers that, as a group, accomplish some goal.

For example, say you want to create a web server that is open to the world, but you also want authentication so that
only a select group of users can access it. You could use a single pod with two containers.

• One that does the authentication. It would have something like Apache specified in its container image, and
would be connected to the outside world.

• One that receives information from the authentication container, and does something fancy with it (maybe it
runs a python process).

This is useful because it lets you compatmentalize the components of the service that you want to run, which makes
things easier to manage and keeps things more stable.

For more information about pods, see the Kubernetes documentation about pods.

24 Chapter 8. Tools used in a JupyterHub Deployment

https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

Zero to JupyterHub, Release 0.3.1

8.3.3 Deployments

A deployment is a collection of pods on kubernetes. It is how kubernetes knows exactly what containers and what
machines need to be running at all times. For example, if you have two pods: one that does the authenticating described
above, and another that manages a database, you can specify both in a deployment.

Kubernetes will ensure that both pods are active, and if one goes down then it will try to re-create it. It does this
by continually checking the current state of the pods, and then comparing this with the original specification of the
deployment. If there are differences between the current state vs. the specification of the deployment, Kubernetes will
attempt to make changes until the current state matches the specification.

For more information about deployments, see the Kubernetes documentation about deployment.

Note: Users don’t generally “create” deployments directly, they are instead generated from a set of instructions that
are sent to Kubernetes. We’ll cover this in the section on “Helm”.

8.3.4 Service

A service is simply a stable way of referring to a deployment. Kubernetes is all about intelligently handling dynamic
and quickly-changing computational environments. This means that the VMs running your pods may change, IP
addresses will be different, etc. However you don’t want to have to re-orient yourself every time this happens. A
Kubernetes service keeps track of all these changes on the backend, and provides a single address to manage your
deployment.

For more information about services, see the Kubernetes documentation about services.

8.3.5 Namespace

Finally, a namespace defines a collection of objects in Kubernetes. It is generally the most “high-level” of the groups
we’ve discussed thus far. For example, a a namespace could be a single class running with JupyterHub.

For more information about namespaces, see the Kubernetes documentation on namespaces.

8.3.6 Persistent Volume Claim

Persistent Volume Claims are a way to have persistent storage without being tied down to one specific computer or
machine. Kubernetes is about that flexibility, and that means that we don’t want to lock ourselves in to a particular
operating system just because our files are already on it. Persistent Volume Claims help deal with this problem by
knowing how to convert files between disk types (e.g., AWS vs. Google disks).

For more information on Persistent Volume Claims, see the Kubernetes documentation on persistent volumes.

8.3. Kubernetes 25

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/admin/namespaces/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Zero to JupyterHub, Release 0.3.1

8.4 Helm

Helm is a way of specifying kubernetes objects with a standard template.

8.4.1 Charts

The way that Helm controls kubernetes is with templates of structured information that specify some computational
requirements. These templates are called “charts”, or “helm charts”. They contain all of the necessary information for
kubernetes to generate:

• a deployment object

• a service object

• a persistent volume object a deployment.

• collections of the above components

They can be installed into a namespace, which causes kubernetes to begin deploying the objects above into that
namespace.

Charts have both names and versions, which means that you can easily update them and build off of them. There are
community maintained charts available, and we use a chart to install and upgrade JupyterHub in this guide. In our
case, the helm chart is a file called config.yaml.

8.4.2 Releases

A release is basically a specific instantiation of a helmchart inserted into a particular namespace. If you’d like to
upgrade your kubernetes deployment (say, by changing the amount of RAM that each user should get), then you can
change the helm chart, then re-deploy it to your kubernetes cluster. This generates a new version of the release.

8.5 JupyterHub

JupyterHub is a way of utilizing the components above in order to provide computational environments that users
can access remotely. It exists as two kubernetes deployments, Proxy and Hub, each of which has one pod. Each
deployment accomplishes some task that, together, make up JupyterHub. Finally, the output of JupyterHub is a user
pod, which specifies the computational environment in which a single user will operate. So essentially a JupyterHub
is a collection of:

• Pods that contain the JupyterHub Machiner

• A bunch of user pods that are constantly being created or destroyed.

Below we’ll describe the primary JupyterHub pods.

26 Chapter 8. Tools used in a JupyterHub Deployment

https://helm.sh/
https://github.com/kubernetes/charts/tree/master/stable

Zero to JupyterHub, Release 0.3.1

8.5.1 Proxy Pod

This is the user-facing pod. It provides the IP address that people will go to in order to access JupyterHub. When a
new users goes to this pod, it will decide whether to:

• send that user to the Hub pod, which will create a container for that user, or

• if that user’s container already exists, send them directly to that container instead.

Information about the user’s identity is stored as a cookie on their computer. This is how the proxy pod knows whether
a user already has a running container.

8.5.2 Hub Pod

Receives traffic from the proxy pod. It has 3 main running processes:

1. An authenticator, which can verify a user’s account. It also contains a process.

2. A “KubeSpawner” that talks to the kubernetes API and tells it to spawn pods for users if one doesn’t already
exist. KubeSpawner will tell kubernetes to create a pod for a new user, then it will tell the the Proxy Pod that
the user’s pod has been created.

3. An admin panel that has information about who has pods created, and what kind of usage exists on the cluster.

Administrator Guide

This section provides information on managing and maintaining a staging or production deployment of JupyterHub.

8.5. JupyterHub 27

Zero to JupyterHub, Release 0.3.1

28 Chapter 8. Tools used in a JupyterHub Deployment

CHAPTER

NINE

RESOURCE MANAGEMENT

Under development

29

Zero to JupyterHub, Release 0.3.1

30 Chapter 9. Resource management

CHAPTER

TEN

ESTIMATING COSTS

Cost estimates depend highly on your deployment setup. Several factors that significantly influence cost estimates,
include:

• Computational resources provided to users

• Number of users

• Usage patterns of users

10.1 Computational Resources

Memory (RAM) makes up the largest part of a cost estimate. More RAM means that your users will be able to work
with larger datasets with more flexibility, but it can also be expensive. As a general rule, costs associated with RAM
scale at <XXX> cost.

Persistent storage for users, if needed, is another element that will impact the cost estimate. If users don’t have
persistent storage, then disks will be wiped after users finish their sessions. None of their changes will be saved. This
requires significantly fewer storage resources, and also results in faster load times. Storage roughly scales at <XXX>
cost.

10.2 Users

The number of users has a direct relationship to cost estimates. Since a deployment may support different types of
users (i.e. researchers, students, instructors) with varying hardware and storage needs, take into account both the type
of users and the number per type.

10.3 User usage patterns

Another important factor is what usage pattern your users will have. Will they all use the JupyterHub at once, such as
during a large class workshop? will users use JupyterHub at different times of day?

The usage patterns and peak load on the system have important implications for the resources you need to provide.
In the future JupyterHub will have auto-scaling functionality, but currently it does not. This means that you need to
provision resources for the maximum expected number of users at one time.

31

Zero to JupyterHub, Release 0.3.1

10.4 Examples

Here are a few examples that describe the use cases and amount of resources used by a particular JupyterHub imple-
mentation, and how much it might cost. Your estimates will vary.

10.4.1 Data 8

The Data 8 course at UC Berkeley used a JupyterHub to coordinate all course material and to provide a platform where
students would run their code. This consisted of many hundreds of students, who had minimal requirements in terms
of CPU and memory usage. Ryan Lovett put together a short Jupyter notebook estimating the cost for computational
resources depending on the student needs.

32 Chapter 10. Estimating costs

https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb
https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb

CHAPTER

ELEVEN

BACKUPS

Under development

33

Zero to JupyterHub, Release 0.3.1

34 Chapter 11. Backups

CHAPTER

TWELVE

UPGRADING

Under development

35

Zero to JupyterHub, Release 0.3.1

36 Chapter 12. Upgrading

CHAPTER

THIRTEEN

SECURITY CONSIDERATIONS

Under development

37

Zero to JupyterHub, Release 0.3.1

38 Chapter 13. Security Considerations

CHAPTER

FOURTEEN

TROUBLESHOOTING

14.1 FAQ - General

I thought I had deleted my cloud resources, but they still show up. Why?

You probably deleted the specific nodes, but not the kubernetes cluster that was controlling those nodes. Kubernetes
is designed to make sure that a specific set of resources is available at all times. This means that if you only delete
the nodes, but not the kubernetes instance, then it will detect the loss of computers and will create two new nodes to
compensate.

How does billing for this work?

JupyterHub isn’t handling any of the billing for your usage. That’s done through whatever cloud service you’re using.

14.2 Common error messages

14.2.1 General

This section includes “provider agnostic” error messages for JupyterHub and Kubernetes.

14.2.2 Google Cloud

1. Could not find default credentials. See https://developers.google.com/
accounts/docs/application-default-credentials for more information.

Execute gcloud auth application-default login and follow the prompts. The provided link in
the error message has additional options for advanced use cases.

2. ERROR: (gcloud.container.clusters.create) ResponseError: code=503,
message=Project staeiou-5f880 is not fully initialized with the default
service accounts. Please try again later.

Go to https://console.cloud.google.com/kubernetes/list and click ‘enable’ and follow the prompts.

39

https://console.cloud.google.com/kubernetes/list

Zero to JupyterHub, Release 0.3.1

14.3 Investigating Issues

If you encounter any issues or wish to see what’s happening under the hood, use the following commands.

To see running pods:

kubectl --namespace=<YOUR-NAMESPACE> get pod

To see the logs:

kubectl --namespace=<YOUR-NAMESPACE> logs <pod-name>

You can pass -f option to the logs command to tail them.

Tip: Google Cloud: You can see the logs in the GUI on https://console.cloud.google.com there should be logging
under the hamburger menu.

Reference

40 Chapter 14. Troubleshooting

https://console.cloud.google.com

CHAPTER

FIFTEEN

GLOSSARY

A partial glossary of terms used in this guide. For more complete descriptions of the components in JupyterHub, see
the list of tools used in JupyterHub. Here we try to keep the definition as succinct and relevant as possible, and provide
links to learn more details.

admin user A user who can access the JupyterHub admin panel. They can start/stop user pods, and potentially access
their notebooks.

authenticator The way in which users are authenticated to log into JupyterHub. There are many authenticators
available, like GitHub, Google, MediaWiki, Dummy (anyone can log in), etc.

culler A separate process that stops the user pods of users who have not been active in a configured interval.

persistent storage A filesystem attached to a user pod that allows the user to store notebooks and files that persist
across multiple logins.

41

tools.html
http://jupyterhub.readthedocs.io/en/stable/authenticators.html

Zero to JupyterHub, Release 0.3.1

42 Chapter 15. Glossary

CHAPTER

SIXTEEN

ADDITIONAL RESOURCES

Under development

43

	Getting started with JupyterHub
	Deployment Guide
	Extending and Customizing JupyterHub
	Dependencies for Deploying a JupyterHub Instance

	Questions or Suggestions?
	Creating a Kubernetes Cluster
	Setting up Kubernetes on Google Cloud
	Setting up Kubernetes on Microsoft Azure Container Service (ACS)
	Next Step

	Setting up Helm
	Installation
	Initialization
	Next Step

	Setting up JupyterHub
	Prepare configuration file
	Install JupyterHub

	Turning Off JupyterHub and Computational Resources
	Extending your JupyterHub setup
	Applying configuration changes
	Using an existing image
	Setting memory and CPU guarantees / limits for your users
	Extending your software stack with s2i
	Pre-populating $HOME directory with notebooks when using Persistent Volumes
	Authenticating with OAuth2
	Full Example of Google OAuth2
	Expanding and contracting the size of your cluster

	Tools used in a JupyterHub Deployment
	Cloud Computing Providers
	Container Technology
	Kubernetes
	Helm
	JupyterHub

	Resource management
	Estimating costs
	Computational Resources
	Users
	User usage patterns
	Examples

	Backups
	Upgrading
	Security Considerations
	Troubleshooting
	FAQ - General
	Common error messages
	Investigating Issues

	Glossary
	Additional resources

