

Zero to JupyterHub

JupyterHub [https://github.com/jupyterhub/jupyterhub] is a tool that allows you to quickly utilize cloud computing
infrastructure to manage a hub that enables users to interact remotely
with a computing environment that you specify. JupyterHub offers a useful way
to standardize the computing environment of a group of people (e.g.,
for a class of students), as well as allowing people to access the
hub remotely.

This growing collection of information will help you set up your own
JupyterHub instance. It is in an early stage, so the information and
tools may change quickly. If you see anything that is incorrect or have any
questions, feel free to reach out at the issues page [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues].

Creating your JupyterHub

	Getting started with JupyterHub
	Deployment Guide

	Extending and Customizing JupyterHub

	Dependencies for Deploying a JupyterHub Instance

	Questions or Suggestions?

	Creating a Kubernetes Cluster
	Setting up Kubernetes on Google Cloud

	Setting up Kubernetes on Microsoft Azure Container Service (ACS)

	Next Step

	Setting up Helm
	Installation

	Initialization

	Next Step

	Setting up JupyterHub
	Prepare configuration file

	Install JupyterHub

	Turning Off JupyterHub and Computational Resources

Customization Guide

JupyterHub can be configured and customized to fit a variety of deployment
requirements. This guide helps outline how to customize and extend a
JupyterHub deployment.

	Extending your JupyterHub setup
	Applying configuration changes

	Using an existing image

	Setting memory and CPU guarantees / limits for your users

	Extending your software stack with s2i

	Pre-populating $HOME directory with notebooks when using Persistent Volumes

	Authenticating with OAuth2

	Full Example of Google OAuth2

	Expanding and contracting the size of your cluster

	Tools used in a JupyterHub Deployment
	Cloud Computing Providers

	Container Technology

	Kubernetes

	Helm

	JupyterHub

Administrator Guide

This section provides information on managing and maintaining a staging or
production deployment of JupyterHub.

	Resource management

	Estimating costs
	Computational Resources

	Users

	User usage patterns

	Examples

	Backups

	Upgrading

	Security Considerations

	Troubleshooting
	FAQ - General

	Common error messages

	Investigating Issues

Reference

	Glossary

	Additional resources

Getting started with JupyterHub

The goal of JupyterHub is to create custom computing environments that
can be accessed remotely (e.g., at a specific URL) by multiple users.

This guide acts as an assistant to guide you through the process of setting
up your JupyterHub deployment. It helps you connect and configure the
following things:

	A cloud provider such Google Cloud, Microsoft Azure, Amazon EC2, and
others

	Kubernetes to manage resources on the cloud

	Helm to configure and control Kubernetes

	Docker to use containers that standardize computing environments

	JupyterHub to manage users and deploy Jupyter notebooks

You already are well on your way to understanding what it means (procedurally)
to deploy Jupyterhub.

Deployment Guide

We’ve put together a short walkthrough going from having nothing set up to a
complete deployment of jupyterhub on Google Cloud. If you want to follow that
comprehensive walkthrough, the next step on your journey is to create a
Kubernetes cluster on Google Cloud.

Extending and Customizing JupyterHub

If you’d like to know how to expand and customize your jupyterhub setup, such
as increasing the computational resources available to users or changing authentication
services, check out Extending your JupyterHub setup.

Dependencies for Deploying a JupyterHub Instance

For a more extensive description of the tools and services that JupyterHub
depends upon, see our Tools used in a JupyterHub Deployment page.

Questions or Suggestions?

If you have questions or suggestions, please reach out at our issues page [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues]
on GitHub.

Creating a Kubernetes Cluster

Kubernetes’ documentation describes the many ways to set up a cluster [https://kubernetes.io/docs/setup/pick-right-solution/].
Here, we shall provide quick instructions for the most painless and
popular ways of getting setup in various cloud providers:

	Google Cloud

	Microsoft Azure

	Amazon EC2

	Red Hat OpenShift

	Others

Setting up Kubernetes on Google Cloud [https://cloud.google.com/]

Google Container Engine [https://cloud.google.com/container-engine/]
(confusingly abbreviated to GKE) is the simplest and most common way of setting
up a Kubernetes Cluster. You may be able to receive free credits [https://cloud.google.com/free/] for trying it out. You will need to
connect your credit card or other payment method to your google cloud account.

	Go to https://console.cloud.google.com.

	Click the hamburger icon in the top left (the icon has three horizontal lines
in one button). Go to “Billing” then “Payment Methods”, and make sure you
have a credit card linked to the account. (You may also receive $300 in trial
credits.)

	Install and initialize the gcloud command-line tools. These tools send
commands to Google Cloud and lets you do things like create and delete
clusters.

	Go to the gcloud downloads page [https://cloud.google.com/sdk/downloads]
to download and install the gcloud SDK.

	See the gcloud documentation [https://cloud.google.com/sdk/] for
more information on the gcloud SDK.

	Install kubectl, which is a tool for controlling kubernetes. From
the terminal, enter:

gcloud components install kubectl

	Create a Kubernetes cluster on Google Cloud, by typing in the following
command:

gcloud container clusters create <YOUR_CLUSTER> \
 --num-nodes=3 \
 --machine-type=n1-standard-2 \
 --zone=us-central1-b

where:

	--num-nodes specifies how many computers to spin up. The higher the
number, the greater the cost.

	--machine-type specifies the amount of CPU and RAM in each node. There
is a variety of types [https://cloud.google.com/compute/docs/machine-types]
to choose from. Picking something appropriate here will have a large effect
on how much you pay - smaller machines restrict the max amount of RAM each
user can have access to but allow more fine-grained scaling, reducing cost.
The default (n1-standard-2) has 2CPUs and 7.5G of RAM each, and might not
be a good fit for all use cases!

	--zone specifies which data center to use. Pick something that is not
too far away from your users. You can find a list of them here [https://cloud.google.com/compute/docs/regions-zones/regions-zones#available].

	To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

Setting up Kubernetes on Microsoft Azure Container Service (ACS)

Note

This is an alpha work-in-progress - please do not use in production! Help from
people with more Azure experience would be highly welcome :)

	Install and initialize the Azure command-line tools, which send commands
to Azure and let you do things like create and delete clusters.

	Go to the azure-cli github repo [https://github.com/Azure/azure-cli]
to download and install the azure-cli tools.

	See the az documentation [https://docs.microsoft.com/en-us/cli/azure/acs]
for more information on using the az tool with the Azure Container
Service.

	Authenticate the az tool so it may access your Azure account:

az login

	Specify a Azure resource group [https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups], and create one if it doesn’t already
exist:

export RESOURCE_GROUP=<YOUR_RESOURCE_GROUP>
export LOCATION=<YOUR_LOCATION>
az group create --name=${RESOURCE_GROUP} --location=${LOCATION}

where:

	--name specifies your Azure resource group. If a group doesn’t exist,
az will create it for you.

	--location specifies which computer center to use. To reduce latency,
choose a zone closest to whoever is sending the commands. View available
zones via az account list-locations.

	Install kubectl, a tool for controlling Kubernetes:

az acs kubernetes install-cli

	Create a Kubernetes cluster on Azure, by typing in the following commands:

export CLUSTER_NAME=<YOUR_CLUSTER_NAME>
export DNS_PREFIX=<YOUR_PREFIX>
az acs create --orchestrator-type=kubernetes \
 --resource-group=${RESOURCE_GROUP} \
 --name=${CLUSTER_NAME} \
 --dns-prefix=${DNS_PREFIX}

	Authenticate kubectl:

az acs kubernetes get-credentials \
 --resource-group=${RESOURCE_GROUP} \
 --name=${CLUSTER_NAME}

where:

	--resource-group specifies your Azure resource group.

	--name is your ACS cluster name.

	--dns-prefix is the domain name prefix for the cluster.

	To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

Next Step

Now that you have a Kubernetes cluster running, it is time to
set up helm.

Setting up Helm

Helm [https://helm.sh/], the package manager for Kubernetes, is a useful tool
to install, upgrade and manage applications on a Kubernetes cluster. We will be
using Helm to install and manage JupyterHub on our cluster.

Installation

The simplest way to install helm is to run Helm’s installer script at a
terminal:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

Alternative methods for helm installation [https://github.com/kubernetes/helm/blob/master/docs/install.md]
exist if you prefer to install without using the script.

Initialization

After installing helm on your machine, initialize helm on your Kubernetes
cluster. At the terminal, enter:

helm init

This command only needs to run once per Kubernetes cluster.

Next Step

Congratulations. Helm is now set up. The next step is to
install JupyterHub!

Setting up JupyterHub

Now that we have a Kubernetes cluster and
helm setup, we can begin setting up a JupyterHub.

Prepare configuration file

This step prepares a configuration file (config file). We will use the
YAML [https://en.wikipedia.org/wiki/YAML] file format to specify
JupyterHub’s configuration.

It’s important to save the config file in a safe place. The config file is
needed for future changes to JupyterHub’s settings.

For the following steps, use your favorite code editor. We’ll use the
nano [https://en.wikipedia.org/wiki/GNU_nano] editor as an example.

	Create a file called config.yaml. Using the nano editor, for example,
entering nano config.yaml at the terminal will start the editor and
open the config file.

	Create two random hex strings to use as security tokens. Run these two
commands (they’re the same command but run them twice) in a terminal:

openssl rand -hex 32
openssl rand -hex 32

Copy the output each time, we’ll use these hex strings in the next step.

	Insert these lines into the config.yaml file. When editing YAML files,
use straight quotes and spaces and avoid using curly quotes or tabs.
Substitute each occurrence of RANDOM_STRING_N below with the output of
openssl rand -hex 32. The random hex strings are tokens that will be used
to secure your JupyterHub instance (make sure that you keep the quotation
marks):

hub:
 # output of first execution of 'openssl rand -hex 32'
 cookieSecret: "RANDOM_STRING_1"
token:
 # output of second execution of 'openssl rand -hex 32'
 proxy: "RANDOM_STRING_2"

For example:

hub:
 cookieSecret: "cb0b45df678709c5cc780ed73690898f7ba0659902f996017296143976ffb97c"
token:
 proxy: "712c4c6c0e78c6c745cfb126f5bbc4b9ba763c78b4bba5797e2eaf508ac99475"

	Save the config.yaml file. If using the nano editor, hit Ctrl-X and
make sure to answer ‘yes’ when it asks you to save.

Install JupyterHub

	Let’s use helm to create the instances that you configured with the
config.yaml file. Run this command from the directory that contains the
config.yaml file to spin up JupyterHub:

helm install https://github.com/jupyterhub/helm-chart/releases/download/v0.3.1/jupyterhub-v0.3.1.tgz \
 --name=<YOUR_RELEASE_NAME> \
 --namespace=<YOUR_NAMESPACE> \
 -f config.yaml

where:

	--name is an identifier used by helm to refer to this deployment.
You need it when you are changing the configuration of this install
or deleting it. Use something descriptive that you will easily
remember. For a class called data8 you might wish set the name to
data8-jupyterhub. In the future you can find out the name by
using helm list.

	--namespace is an identifier
used by Kubernetes [https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/]
(among other things) to identify a particular application that might
be running on a single Kubernetes cluster. You can install many
applications into the same Kubernetes cluster, and each instance of
an application is usually separated by being in its own namespace.
You’ll need the namespace identifier for performing any commands
with kubectl.

We recommend providing the same value to --name and --namespace
for now to avoid too much confusion, but advanced users of Kubernetes and
helm should feel free to use different values.

Note

If you get a release named <YOUR_CHART> already exists error, then
you should delete this helm-chart by running
helm delete --purge <YOUR_CHART>. Then reinstall by repeating this
step.

	While Step 1 is running, you can see the pods being created by entering in
a different terminal:

kubectl --namespace=<YOUR_NAMESPACE> get pod

	Wait for the hub and proxy pod to begin running.

	You can find the IP to use for accessing the JupyterHub with:

kubectl --namespace=<YOUR_NAMESPACE> get svc

The external IP for the proxy-public service should be accessible in a
minute or two.

	To use JupyterHub, enter the external IP for the proxy-public service in
to a browser. JupyterHub is running with a default dummy authenticator so
entering any username and password combination will let you enter the hub.

Congratulations! Now that you have JupyterHub running, you can
extend it in many ways. You can use a pre-built
image for the user container, build your own image, configure different
authenticators, and more!

Turning Off JupyterHub and Computational Resources

When you are done with your hub, you should delete it so you are no longer
paying money for it.

	First, delete the namespace the hub was installed in. This deletes any disks
that may have been created to store user’s data, and any IP addresses that
may have been provisioned.

kubectl delete namespace <your-namespace>

	Next, you should delete the kubernetes cluster. You can list all the clusters
you have.

gcloud container clusters list

You can then delete the one you want.

gcloud container clusters delete <CLUSTER-NAME> --zone=<CLUSTER-ZONE>

	Double check to make sure all the resources are now deleted, since anything you
have not deleted will cost you money! You can check the web console [https://console.cloud.google.com]
(make sure you are in the right project and account!) to make sure everything
has been deleted.

At a minimum, check the following under the Hamburger (left top corner) menu:

	Compute Engine -> Disks

	Container Engine

	Networking -> Load Balancing

These might take several minutes to clear up, but they shouldn’t have anything
related to your JupyterHub cluster after you have deleted the cluster.

Extending your JupyterHub setup

The helm chart used to install JupyterHub has a lot of options for you to tweak.
This page lists some of the most common changes.

Applying configuration changes

The general method is:

	Make a change to the config.yaml

	Run a helm upgrade:

helm upgrade <YOUR_RELEASE_NAME> https://github.com/jupyterhub/helm-chart/releases/download/v0.3/jupyterhub-v0.3.tgz -f config.yaml

Where <YOUR_RELEASE_NAME> is the parameter you passed to --name when
installing jupyterhub with
helm install. If you don’t remember it, you can probably find it by doing
helm list.

	Wait for the upgrade to finish, and make sure that when you do
kubectl --namespace=<YOUR_NAMESPACE> get pod the hub and proxy pods are
in Ready state. Your configuration change has been applied!

Using an existing image

It’s possible to build your JupyterHub deployment off of a pre-existing Docker
image. To do this, you need to find an existing image somewhere (such as
DockerHub), and configure your installation to use it.

For example, UC Berkeley’s Data8 Program [https://hub.docker.com/r/berkeleydsep/singleuser-data8]
publishes the image they are using on Dockerhub. To instruct JupyterHub to use
this image, simply add this to your config.yaml file:

singleuser:
 image:
 name: berkeleydsep/singleuser-data8
 tag: v0.1

You can then apply the change to the
config as usual.

Setting memory and CPU guarantees / limits for your users

Each user on your JupyterHub gets a slice of memory and CPU to use. There are
two ways to specify how much users get to use: resource guarantees and
resource limits.

A resource guarantee means that all users will have at least this resource
available at all times, but they may be given more resources if they’re
available. For example, if users are guaranteed 1G of RAM, users can
technically use more than 1G of RAM if these resources aren’t being used by
other users.

A resource limit sets a hard limit on the resources available. In the example
above, if there were a 1G memory limit, it would mean that users could use
no more than 1G of RAM, no matter what other resources are being used on the
machines.

By default, each user is guaranteed 1G of RAM. All users have at least 1G,
but they can technically use more if it is available. You can easily change the
amount of these resources, and whether they are a guarantee or a limit, by
changing your config.yaml file. This is done with the following structure.

singleuser:
 memory:
 limit: 1G
 guarantee: 1G

This sets a memory limit and guarantee of 1G. Kubernetes will make sure that
each user will always have access to 1G of RAM, and requests for more RAM will
fail (your kernel will usually die). You can set the limit to be higher than
the guarantee to allow some users to use larger amounts of RAM for
a very short-term time (e.g. when running a single, short-lived function that
consumes a lot of memory).

Note

Remember apply the changes after changing
your config.yaml file!

Extending your software stack with s2i

s2i, also known as Source to Image [https://github.com/openshift/source-to-image],
lets you quickly convert a GitHub repository into a Docker image that we can use
as a base for your JupyterHub instance. Anything inside the GitHub repository
will exist in a user’s environment when they join your JupyterHub. If you
include a requirements.txt file in the root level of your of the repository,
s2i will pip install each of these packages into the Docker image to be
built. Below we’ll cover how to use s2i to generate a Docker image and how to
configure JupyterHub to build off of this image.

Note

For this section, you’ll need to install s2i and docker.

	Download s2i. This is easily done with homebrew on a mac. For linux and
Windows it entails a couple of quick commands that you can find in the
links below:

	On OSX: brew install s2i

	On Linux and Windows: follow these instructions [https://github.com/openshift/source-to-image#installation]

	Download and start Docker. You can do this by downloading and installing
Docker at this link [https://store.docker.com/search?offering=community&platform=desktop%2Cserver&q=&type=edition].
Once you’ve started Docker, it will show up as a tiny background application.

	Create (or find) a GitHub repository you want to use. This repo should
have all materials that you want your users to access. In addition you can
include a requirements.txt file that has one package per line. These
packages should be listed in the same way that you’d install them using
pip install. You should also specify the versions explicitly so the image is
fully reproducible. E.g.:

numpy==1.12.1
scipy==0.19.0
matplotlib==2.0

	Use s2i to build your Docker image. s2i uses a template in order to
know how to create the Docker image. We have provided one at the url in the
commands below. Run this command:

s2i build --exclude "" <git-repo-url> jupyterhub/singleuser-builder-venv-3.5:v0.1.5 gcr.io/<project-name>/<name-of-image>:<tag>

this effectively says s2i, build `<this repository>` to a Docker image by
using `<this template>` and call the image `<this>`. The –exclude “” ensures
that all files are included in the container (e.g. .git directory).

Note

	The project name should match your google cloud project’s name.

	Don’t use underscores in your image name. Other than this it can be
anything memorable. This is a bug that will be fixed soon.

	The tag should be the first 6 characters of the SHA in the GitHub
commit for the image to build from.

	Push our newly-built Docker image to the cloud. You can either push this
to Docker Hub, or to the gcloud docker repository. Here we’ll push to the
gcloud repository:

gcloud docker -- push gcr.io/<project-name>/<image-name>:<tag>

	Edit the JupyterHub configuration to build from this image. We do this
by editing the config.yaml file that we originally created to include
the jupyter hashes. Edit config.yaml by including these lines in it:

singleuser:
 image:
 name: gcr.io/<project-name>/<image-name>
 tag: <tag>

	Tell helm to update JupyterHub to use this configuration. Using the
normal method to apply the change to
the config.

	Restart your notebook if you are already logging in If you already have
a running JupyterHub session, you’ll need to restart it (by stopping and
starting your session from the control panel in the top right). New users
won’t have to do this.

	Enjoy your new computing environment! You should now have a live
computing environment built off of the Docker image we’ve created.

Note

The contents of your GitHub repository might not show up if you have
enabled persistent storage. Disable persistent storage if you want them
to show up!

Pre-populating $HOME directory with notebooks when using Persistent Volumes

By default, Persistent Volumes are used, so if you would like to include the
contents of the GitHub repository in the $HOME directory (e.g. all of the
*.ipynb files), then edit config.yaml include these lines in it:

singleuser:
 lifecycleHooks:
 postStart:
 exec:
 command: ["/bin/sh", "-c", "test -f $HOME/.copied || cp -Rf /srv/app/src/. $HOME/; touch $HOME/.copied"]

Note that this will only copy the contents of the directory to $HOME once -
the first time the user logs in. Further updates will not be reflected. There
is work in progress for making this better.

Authenticating with OAuth2

JupyterHub’s oauthenticator [https://github.com/jupyterhub/oauthenticator]
has support for enabling your users to authenticate via a third-party OAuth
provider, including GitHub, Google, and CILogon.

Follow the service-specific instructions linked on the
oauthenticator repository [https://github.com/jupyterhub/oauthenticator]
to generate your JupyterHub instance’s OAuth2 client ID and client secret. Then
declare the values in the helm chart (config.yaml).

Here are example configurations for two common authentication services. Note
that in each case, you need to get the authentication credential information
before you can configure the helmchart for authentication.

Google

For more information see the full example of Google OAuth2 in the next section.

auth:
 type: google
 google:
 clientId: "yourlongclientidstring.apps.googleusercontent.com"
 clientSecret: "adifferentlongstring"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
 hostedDomain: "youruniversity.edu"
 loginService: "Your University"

GitHub

auth:
 type: github
 github:
 clientId: "y0urg1thubc1ient1d"
 clientSecret: "an0ther1ongs3cretstr1ng"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

Full Example of Google OAuth2

If your institution is a G Suite customer [https://gsuite.google.com] that
integrates with Google services such as Gmail, Calendar, and Drive, you can
authenticate users to your JupyterHub using Google for authentication.

Note

Google requires that you specify a fully qualified domain name for your
hub rather than an IP address.

	Log in to the Google API Console [https://console.developers.google.com].

	Select a project > Create a project… and set ‘Project name’. This is a
short term that is only displayed in the console. If you have already
created a project you may skip this step.

	Type “Credentials” in the search field at the top and click to access the
Credentials API.

	Click “Create credentials”, then “OAuth client ID”. Choose
“Application type” > “Web application”.

	Enter a name for your JupyterHub instance. You can give it a descriptive
name or set it to be the hub’s hostname.

	Set “Authorized JavaScript origins” to be your hub’s URL.

	Set “Authorized redirect URIs” to be your hub’s URL followed by
“/hub/oauth_callback”. For example, http://example.com/hub/oauth_callback.

	When you click “Create”, the console will generate and display a Client ID
and Client Secret. Save these values.

	Type “consent screen” in the search field at the top and click to access the
OAuth consent screen. Here you will customize what your users see when they
login to your JupyterHub instance for the first time. Click Save when you
are done.

	In your helm chart, create a stanza that contains these OAuth fields:

auth:
 type: google
 google:
 clientId: "yourlongclientidstring.apps.googleusercontent.com"
 clientSecret: "adifferentlongstring"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
 hostedDomain: "youruniversity.edu"
 loginService: "Your University"

The ‘callbackUrl’ key is set to the authorized redirect URI you specified
earlier. Set ‘hostedDomain’ to your institution’s domain name. The value of
‘loginService’ is a descriptive term for your institution that reminds your
users which account they are using to login.

Expanding and contracting the size of your cluster

You can easily scale up or down your cluster’s size to meet usage demand or to
save cost when the cluster is not being used. Use the resize command and
provide a new cluster size as a command line option --size:

gcloud container clusters resize \
 <YOUR-CLUSTER-NAME> \
 --size <NEW-SIZE> \
 --zone <YOUR-CLUSTER-ZONE>

To display the cluster’s name, zone, or current size, use the command
gcloud container clusters list.

Note

When organizing and running a workshop, resizing a cluster gives you a way
to save cost and prepare JupyterHub before the event. For example:

	One week before the workshop: You can create the cluster, set
everything up, and then resize the cluster to zero nodes to save cost.

	On the day of the workshop: You can scale the cluster up to a suitable
size for the workshop. This workflow also helps you avoid scrambling on
the workshop day to set up the cluster and JupyterHub.

	After the workshop: The cluster can be deleted.

Tools used in a JupyterHub Deployment

JupyterHub is meant to connect with many tools in the world of
cloud computing and container technology. This page describes these
tools in greater detail in order to provide some more contextual
information.

Cloud Computing Providers

This is whatever will run the actual computation. Generally it means a
company, university server, or some other organization that hosts computational
resources that can be accessed remotely. JupyterHub will run on these
computational resources, meaning that users will also be operating on these
resources if they’re interacting with your JupyterHub.

They provide the following things:

	Computing

	Disk space

	Networking (both internal and external)

	Creating, resizing, and deleting clusters

Some of these organizations are companies
(e.g., Google [http://cloud.google.com/]), though JupyterHub
will work fine with university clusters or custom cluster deployments as well.
For these materials, any cluster with Kubernetes installed will work
with JupyterHub.

More information about setting up accounts services with cloud providers
can be found here.

Container Technology

Container technology is essentially the idea of bundling all of the
necessary components to run a piece of software. There are many ways
to do this, but one that we’ll focus on is called Docker. Here are
the main concepts of Docker:

Container Image

Container images contain the dependencies required to run your code.
This includes everything, all the way down to the operating
system itself. It also includes things like the filesystem on which
your code runs, which might include data etc. Containers are also
portable, meaning that you can exactly recreate the computational
environment to run your code on almost any machine.

In Docker, images are described as layers, as in layers of dependencies.
For example, say you want to build a container that runs scikit-learn.
This has a dependency on Python, so you have two layers: one for
python, and another that inherits the python layer and adds the extra
piece of scikit-learn. Moreover, that base python layer needs an
operating system to run on, so now you have three layers:
ubuntu -> python -> scikit-learn. You get the idea. The beauty of this
is that it means you can share base layers between images. This
means that if you have many different images that all require
ubuntu, you don’t need to have many copies of ubuntu lying around.

Images can be created from many things. If you’re using Docker, the basic
way to do this is with a Dockerfile.
This is essentially a list of instructions that tells
Docker how to create an image. It might tell Docker which base layers
you want to include in an image, as well as some extra dependencies that
you need in the image. Think of it like a recipe that tells Docker how
to create an image.

Containers

You can “run” a container image, and it creates a container for you.
A container is a particular instantiation of a container image. This means
that it actually exists on a computer. It is a self-contained
computational environment that is constructed according to the layers
that are inside of the Container Image. However, because it is now
running on the computer, it can do other useful things like talk to other
Docker containers or communicate via the internet.

Kubernetes

Kubernetes [https://kubernetes.io/] is a service that runs on cloud
infrastructures. It provides a single point of contact with the machinery
of your cluster deployment, and allows a user to specify the computational
requirements that they need (e.g., how many machines, how many CPUs
per machine, how much RAM). Then, it handles the resources on the cluster and
ensures that these resources are always available. If something goes down,
kubernetes will try to automatically bring it back up.

Kubernetes can only manage the computing resources that it is
given. This means that it generally can not create new resources on its
own (with the exception of disk space).

The following sections describe some objects in Kubernetes that are
most relevant for JupyterHub.

Processes

Are any program that is running on a machine. For example,
a Jupyter Notebook creates several processes that handle the
execution of code and the display in the browser. This isn’t
technically a Kubernetes object, since literally any computer has
processes that run on it, but Kubernetes does keep track of running
processes in order to ensure that they remain running if needed.

Pods

Pods are essentially a collection of one or more containers that
run together. You can think of them as a way of combining containers
that, as a group, accomplish some goal.

For example, say you want to create a web server that is open to the
world, but you also want authentication so that only a select group
of users can access it. You could use a single pod with two containers.

	One that does the authentication. It would have something like Apache
specified in its container image, and would be connected to the
outside world.

	One that receives information from the authentication container, and
does something fancy with it (maybe it runs a python process).

This is useful because it lets you compatmentalize the components of the
service that you want to run, which makes things easier to manage and
keeps things more stable.

For more information about pods, see the
Kubernetes documentation about pods [https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/].

Deployments

A deployment is a collection of pods on kubernetes. It is how kubernetes
knows exactly what containers and what machines need to be running at all
times. For example, if you have two pods: one that does the authenticating
described above, and another that manages a database, you can specify both
in a deployment.

Kubernetes will ensure that both pods are active, and if
one goes down then it will try to re-create it. It does this by continually
checking the current state of the pods, and then comparing this with the
original specification of the deployment. If there are differences between
the current state vs. the specification of the deployment, Kubernetes will
attempt to make changes until the current state matches the specification.

For more information about deployments, see the
Kubernetes documentation about deployment [https://kubernetes.io/docs/concepts/workloads/controllers/deployment/].

Note

Users don’t generally “create” deployments directly, they are
instead generated from a set of instructions that are sent to Kubernetes.
We’ll cover this in the section on “Helm”.

Service

A service is simply a stable way of referring to a deployment. Kubernetes
is all about intelligently handling dynamic and quickly-changing
computational environments. This means that the VMs running your pods may change,
IP addresses will be different, etc. However you don’t want to have to
re-orient yourself every time this happens. A Kubernetes service keeps
track of all these changes on the backend, and provides a single address
to manage your deployment.

For more information about services, see the
Kubernetes documentation about services [https://kubernetes.io/docs/concepts/services-networking/service/].

Namespace

Finally, a namespace [https://kubernetes.io/docs/admin/namespaces/]
defines a collection of objects in Kubernetes. It
is generally the most “high-level” of the groups we’ve discussed thus far.
For example, a a namespace could be a single class running with JupyterHub.

For more information about namespaces, see the
Kubernetes documentation on namespaces [https://kubernetes.io/docs/tasks/administer-cluster/namespaces/].

Persistent Volume Claim

Persistent Volume Claims are a way to have persistent storage without
being tied down to one specific computer or machine. Kubernetes is
about that flexibility, and that means that we don’t want to lock ourselves
in to a particular operating system just because our files are already
on it. Persistent Volume Claims help deal with this problem by knowing
how to convert files between disk types (e.g., AWS vs. Google disks).

For more information on Persistent Volume Claims, see the
Kubernetes documentation on persistent volumes [https://kubernetes.io/docs/concepts/storage/persistent-volumes/].

Helm

Helm [https://helm.sh/] is a way of specifying kubernetes objects
with a standard template.

Charts

The way that Helm controls kubernetes is with templates of structured
information that specify some computational requirements.
These templates are called “charts”, or “helm charts”. They contain
all of the necessary information for kubernetes to generate:

	a deployment object

	a service object

	a persistent volume object a deployment.

	collections of the above components

They can be installed into a namespace, which causes kubernetes to
begin deploying the objects above into that namespace.

Charts have both names and versions, which means that you can easily
update them and build off of them. There are
community maintained charts [https://github.com/kubernetes/charts/tree/master/stable]
available, and we use a chart to install and upgrade JupyterHub in
this guide. In our case, the helm chart is a file called config.yaml.

Releases

A release is basically a specific instantiation of a helmchart inserted
into a particular namespace. If you’d like to upgrade your
kubernetes deployment (say, by changing the amount of RAM that each
user should get), then you can change the helm chart, then re-deploy
it to your kubernetes cluster. This generates a new version of the release.

JupyterHub

JupyterHub is a way of utilizing the components above in order to
provide computational environments that users can access remotely.
It exists as two kubernetes deployments, Proxy and Hub, each of which has
one pod. Each deployment accomplishes some task that, together, make up JupyterHub.
Finally, the output of JupyterHub is a user pod, which specifies the
computational environment in which a single user will operate. So
essentially a JupyterHub is a collection of:

	Pods that contain the JupyterHub Machiner

	A bunch of user pods that are constantly being created or destroyed.

Below we’ll describe the primary JupyterHub pods.

Proxy Pod

This is the user-facing pod. It provides the IP address that people will
go to in order to access JupyterHub. When a new users goes to this pod,
it will decide whether to:

	send that user to the Hub pod, which will create a container for that
user, or

	if that user’s container already exists, send them directly to that
container instead.

Information about the user’s identity is stored as a cookie on their
computer. This is how the proxy pod knows whether a user already has
a running container.

Hub Pod

Receives traffic from the proxy pod. It has 3 main running processes:

	An authenticator, which can verify a user’s account. It also contains a
process.

	A “KubeSpawner” that talks to the kubernetes API and tells it to spawn
pods for users if one doesn’t already exist. KubeSpawner will tell
kubernetes to create a pod for a new user, then it will tell the
the Proxy Pod that the user’s pod has been created.

	An admin panel that has information about who has pods created, and
what kind of usage exists on the cluster.

Resource management

Under development

Estimating costs

Cost estimates depend highly on your deployment setup. Several factors that
significantly influence cost estimates, include:

	Computational resources provided to users

	Number of users

	Usage patterns of users

Computational Resources

Memory (RAM) makes up the largest part of a cost estimate. More RAM means
that your users will be able to work with larger datasets with more
flexibility, but it can also be expensive. As a general rule, costs associated
with RAM scale at <XXX> cost.

Persistent storage for users, if needed, is another element that will impact
the cost estimate. If users don’t have persistent storage, then disks will be
wiped after users finish their sessions. None of their changes will be saved.
This requires significantly fewer storage resources, and also results in faster
load times. Storage roughly scales at <XXX> cost.

Users

The number of users has a direct relationship to cost estimates. Since a
deployment may support different types of users (i.e. researchers, students,
instructors) with varying hardware and storage needs, take into account both the
type of users and the number per type.

User usage patterns

Another important factor is what usage pattern your users will have. Will they
all use the JupyterHub at once, such as during a large class workshop?
will users use JupyterHub at different times of day?

The usage patterns and peak load on the system have important implications for
the resources you need to provide. In the future JupyterHub will have
auto-scaling functionality, but currently it does not. This means that you need
to provision resources for the maximum expected number of users at one time.

Examples

Here are a few examples that describe the use cases and amount of resources
used by a particular JupyterHub implementation, and how much it might cost.
Your estimates will vary.

Data 8

The Data 8 course at UC Berkeley used a JupyterHub to coordinate all course
material and to provide a platform where students would run their code. This
consisted of many hundreds of students, who had minimal requirements in terms
of CPU and memory usage. Ryan Lovett put together a short Jupyter notebook
estimating the cost for computational resources [https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb] depending on the student
needs.

Backups

Under development

Upgrading

Under development

Security Considerations

Under development

Troubleshooting

FAQ - General

I thought I had deleted my cloud resources, but they still show up. Why?

You probably deleted the specific nodes, but not the kubernetes cluster that
was controlling those nodes. Kubernetes is designed to make sure that a
specific set of resources is available at all times. This means that if you
only delete the nodes, but not the kubernetes instance, then it will detect
the loss of computers and will create two new nodes to compensate.

How does billing for this work?

JupyterHub isn’t handling any of the billing for your usage. That’s done
through whatever cloud service you’re using.

Common error messages

General

This section includes “provider agnostic” error messages for JupyterHub
and Kubernetes.

Google Cloud

	Could not find default credentials. See
https://developers.google.com/accounts/docs/application-default-credentials
for more information.

Execute gcloud auth application-default login and follow the prompts.
The provided link in the error message has additional options for advanced
use cases.

	ERROR: (gcloud.container.clusters.create) ResponseError: code=503,
message=Project staeiou-5f880 is not fully initialized with the default
service accounts. Please try again later.

Go to https://console.cloud.google.com/kubernetes/list and click
‘enable’ and follow the prompts.

Investigating Issues

If you encounter any issues or wish to see what’s happening under the hood,
use the following commands.

To see running pods:

kubectl --namespace=<YOUR-NAMESPACE> get pod

To see the logs:

kubectl --namespace=<YOUR-NAMESPACE> logs <pod-name>

You can pass -f option to the logs command to tail them.

Tip

Google Cloud: You can see the logs in the GUI on
https://console.cloud.google.com there should be logging under the
hamburger menu.

Glossary

A partial glossary of terms used in this guide. For more complete
descriptions of the components in JupyterHub, see the list of tools
used in JupyterHub. Here we try to keep the definition as
succinct and relevant as possible, and provide links to learn more details.

	admin user
	A user who can access the JupyterHub admin panel. They can start/stop user
pods, and potentially access their notebooks.

	authenticator [http://jupyterhub.readthedocs.io/en/stable/authenticators.html]
	The way in which users are authenticated to log into JupyterHub. There are
many authenticators available, like GitHub, Google, MediaWiki,
Dummy (anyone can log in), etc.

	culler
	A separate process that stops the user pods of users who have not been
active in a configured interval.

	persistent storage
	A filesystem attached to a user pod that allows the user to store
notebooks and files that persist across multiple logins.

Additional resources

Under development

Index

 _static/images/gcloud_container_clusters_create.png
[04:55:39] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a
ERROR: (gcloud.container.clusters.create) ResponseError: code=503, message=Project alert-result-161014 is not fully

initialized with the default service accounts. Please try again later.
[04:55:48] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

Creating cluster jhub..._

_static/images/gcloud_init.png
[04:42:00] carol@cw-pro in ~ $ gcloud 1init
Welcome! This command will take you through the configuration of gcloud.

Your current configuration has been set to: [default]

You can skip diagnostics next time by using the following flag:
gcloud init --skip-diagnostics

Network diagnostic detects and fixes local network connection issues.
Checking network connection...done.

Reachability Check passed.

Network diagnostic (1/1 checks) passed.

You must log in to continue. Would you like to log in (Y/n)?

_static/images/logo/logo.png
——
Jupyterhu
< e’

_static/images/install_sdk1.png
[04:36:09] carol@cw-pro in ~ $ python -V

Python 2.7.13 Continuum Analytics, Inc.

[04:36:13] carol@cw-pro in ~ $./code/google-cloud-sdk/install.sh
Welcome to the Google Cloud SDK!

To help improve the quality of this product, we collect anonymized usage data
and anonymized stacktraces when crashes are encountered; additional information
is available at <https://cloud.google.com/sdk/usage-statistics>. You may choose
to opt out of this collection now (by choosing 'N' at the below prompt), or at
any time in the future by running the following command:

gcloud config set disable_usage_reporting true
Do you want to help improve the Google Cloud SDK (Y/n)? n

Your current Cloud SDK version dis: 147.0.0
The latest available version is: 147.0.0

Components
Status Name D Size

Not Installed App Engine Go Extensions app-engine-go 47.7 MiB
Not Installed Bigtable Command Line Tool cbt 3.9 MiB
Not Installed Cloud Datalab Command Line Tool datalab < 1 MiB
Not Installed Cloud Datastore Emulator cloud-datastore-emulator 15.4 MiB
Not Installed Cloud Datastore Emulator (Legacy) gcd-emulator 38.1 MiB
Not Installed Cloud Pub/Sub Emulator pubsub-emulator 21.0 MiB
Not Installed Emulator Reverse Proxy emulator-reverse-proxy 56.8 MiB
Not Installed Google Container Registry's Docker credential helper docker-credential-gcr 3.4 MiB
Not Installed gcloud Alpha Commands alpha < 1 MiB
Not Installed gcloud Beta Commands beta < 1 MiB
Not Installed gcloud app Java Extensions app-engine-java 128.6 MiB
Not Installed gcloud app PHP Extensions (Mac 0S X) app-engine-php-darwin 21.9 MiB
Not Installed gcloud app Python Extensions app-engine-python 7.2 MiB
Not Installed kubectl kubectl 11.4 MiB
Installed BigQuery Command Line Tool bq < 1 MiB
Installed Cloud SDK Core Libraries core 5.6 MiB
Installed Cloud Storage Command Line Tool gsutil 2.8 MiB
Installed Default set of gcloud commands gcloud

To install or remove components at your current SDK version [147.0.0], run:
$ gcloud components install COMPONENT_ID
$ gcloud components remove COMPONENT_ID

To update your SDK installation to the latest version [147.0.0], run:

$ gcloud components update

Modify profile to update your $PATH and enable shell command
completion? (Y/n)?

_static/images/service_account_compute_engine.png
® © ® /¢ Daring Fireball: Markdown Sy x (5] Setting up your own Jupytert x " © 1AM & Admin - My First Project x |\ Carol
\

&« C' @ Secure https://console.cloud.google.com/iam-admin/serviceaccounts/project?project=alert-result-161014 * ® G a :
ﬁ You have $300.00 in credit and 357 days left in your free trial. DISMISS UPGRADE

Google Cloud Platform My First Project ~

B 1AM & Admin

= All projects

+® 1AM

|=)] Quotas

oz Service accounts

Q Labels

%)) GCP Privacy & Security
& Settings

9 Encryption Keys

@ |dentity-Aware Proxy

<l

Service Accounts CREATE SERVICE ACCOUNT @ DELETE +2 PERMISSIONS

Service accounts for project "My First Project"

A service account represents a Google Cloud service identity, such as code running on Compute Engine VMs, App Engine apps, or systems running outside Google. Learn more

Q, Find a service account

v/ Service account name ~ Service account ID Key ID Key creation date Options
M 3] Compute Engine default service 874648222803- No keys :
account compute@developer.gserviceaccount.com

_static/file.png

_static/logo.png
——
Jupyterhu
< e’

nav.xhtml

 Table of Contents

 		
 Zero to JupyterHub

 		
 Getting started with JupyterHub

 		
 Deployment Guide

 		
 Extending and Customizing JupyterHub

 		
 Dependencies for Deploying a JupyterHub Instance

 		
 Questions or Suggestions?

 		
 Creating a Kubernetes Cluster

 		
 Setting up Kubernetes on Google Cloud

 		
 Setting up Kubernetes on Microsoft Azure Container Service (ACS)

 		
 Next Step

 		
 Setting up Helm

 		
 Installation

 		
 Initialization

 		
 Next Step

 		
 Setting up JupyterHub

 		
 Prepare configuration file

 		
 Install JupyterHub

 		
 Turning Off JupyterHub and Computational Resources

 		
 Extending your JupyterHub setup

 		
 Applying configuration changes

 		
 Using an existing image

 		
 Setting memory and CPU guarantees / limits for your users

 		
 Extending your software stack with s2i

 		
 Pre-populating $HOME directory with notebooks when using Persistent Volumes

 		
 Authenticating with OAuth2

 		
 Full Example of Google OAuth2

 		
 Expanding and contracting the size of your cluster

 		
 Tools used in a JupyterHub Deployment

 		
 Cloud Computing Providers

 		
 Container Technology

 		
 Container Image

 		
 Containers

 		
 Kubernetes

 		
 Processes

 		
 Pods

 		
 Deployments

 		
 Service

 		
 Namespace

 		
 Persistent Volume Claim

 		
 Helm

 		
 Charts

 		
 Releases

 		
 JupyterHub

 		
 Proxy Pod

 		
 Hub Pod

 		
 Resource management

 		
 Estimating costs

 		
 Computational Resources

 		
 Users

 		
 User usage patterns

 		
 Examples

 		
 Data 8

 		
 Backups

 		
 Upgrading

 		
 Security Considerations

 		
 Troubleshooting

 		
 FAQ - General

 		
 Common error messages

 		
 General

 		
 Google Cloud

 		
 Investigating Issues

 		
 Glossary

 		
 Additional resources

_static/images/authenticate.png
Carol

o0 //) Quickstart for Mac 0S X | Clc X \/*/ G Request for Permission x \
/ / Y

& C' @ Secure https://accounts.google.com/o/oauth2/auth?redirect_uri=http%3A%2F%2Flocalhost%3A8085%2F&prompt=select_account&response_type=... Yr @ a

willingc@gmail.com ~

Google

~ Google Cloud SDK would like to:

; Know who you are on Google @

; View your email address @

@ View and manage your Google Compute Engine @
resources

@ View and manage your applications deployed on @
Google App Engine

@ View and manage your data across Google Cloud @
Platform services

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can

change this and other Account Permissions at any time.
Deny m

_static/minus.png

_static/plus.png

_static/images/cloud_sdk_landing.png
Carol

00 //O Cloud SDK | Google Cloud P|- x \\

& C' | @ Secure https://cloud.google.com/sdk/?hl=en_US#download ¥ @ "El a
) Google Cloud Platform Q search Console ~ } ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners CONTACT SALES

CLOUD SDK

Command-line interface for Google Cloud Platform products and services

\':-) INSTALL FOR MAC 0S X VIEW DOCUMENTATION

Essential Tools for Cloud Platform

The Cloud SDK is a set of tools for Cloud Platform. It contains gcloud, gsutil, and bg, which you can use to access

Google Compute Engine, Google Cloud Storage, Google BigQuery, and other products and services from the
command-line. You can run these tools interactively or in your automated scripts. @ 9 @

Manage Virtual Machine Instances

’ F gcloud makes it easy to manage your fleet of virtual machines on Compute Engine - everything from creating, starting
and managing VM instances to rolling your own VM images. You can also use gcloud to make SSH connections to

your instances.

_static/images/container_engine_location.jpg
&) Google Cloud Platform

ainer clu
f4 Home

ner cluster
APT APl Manager ame ~ Z

) c3s u
B= Billing

{8, Cloud Launcher

.3 Support

O IAM&Admin

COMPUTE
-®- AppEngine
{sf Compute Engi

@ Container Engine

_static/images/authenticate_success.png
® © ® | %) qQuickstart for Mac OS X | Clc X / £) You are now authenticated wit x Carol

& C' @ Secure https://cloud.google.com/sdk/auth_success % @ fé a
{) Google Cloud Platform Q search Console ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners
Contents
Cloud SDK Information about

command-line tools and

SEND FEEDBACK client libraries

You are now authenticated with the Google S
ClOUd SDKI Feedback

The authentication flow has completed successfully. You may close this window, or check out the resources
below.

Information about commmand-line tools and client libraries

To learn more about gcloud command-line commands, see the gcloud Tool Guide.

For further information about the command-line tools for Google App Engine, Compute Engine, Cloud
Storage, BigQuery, Cloud SQL and Cloud DNS (which are all bundled with Cloud SDK), see Accessing Services
with gcloud.

If you are a client application developer and want to find out more about accessing Google Cloud Platform
services with a programming language or framework, see Google APIs Client Libraries.

Tutorials

Here are some links to help you get started with Google Cloud Platform services.

¢ Build a web app and host it on Google App Engine.
To get started, follow the walkthrough in the Google Cloud Platform Console to Try Google App Engine

INPSYY)

_static/images/cloud_sdk_doc_landing.png
LN ///) Google Cloud SDK Document: X \\\

Carol
& C' @ Secure https://cloud.google.com/sdk/docs/ ¥ @ ('l_‘, a :
O Google Cloud Platform Q Search Console 3 ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners CONTACT SALES
Cloud SDK Contents
Cloud SDK

Install the latest Cloud

Product Overview Tools version (147.0.0)

entation Google Cloud SDK Documentation

SEND FEEDBACK

Install the latest Google
Cloud Client Libraries

Quickstarts More information
All Quickstarts Google Cloud SDK is a set of tools that you can use to manage resources and applications hosted on Google Cloud Platform.
. These include the gcloud, gsutil,and bq command line tools.
For Linux

For Debian and Ubuntu
For Red Hat and CentOS
For Mac 0S X

Install the latest Cloud Tools version (147.0.0)

For Windows
LINUX DEBIAN/UBUNTU RED HAT/CENTOS MAC 0S X WINDOWS
How-to Guides
All How-to Guides
Installing the SDK

1. Make sure that Python 2.7.9 or later is installed on your system.

Setting up the SDK python -V
Managing SDK Components
Using gcloud Interactive Shell Z& 2. Download one of the following:

Scripting gcloud Commands

PLATFORM PACKAGE SIZE SHA1 CHECKSUM
APIs & Reference
geloud Reference Mac 0S X google-cloud-sdk- 13.4 e2echd294801721a7cc97616ebfae191f3800fbf
(x86_64) 147.0.0-darwin- MB

Google Cloud Client Libraries
x86_64.tar.gz

Concepts Mac 0S X google-cloud-sdk- 13.4 2a029b65e0c73749f58bbf1af809249c7345caa7
All Concepts (x86) 147.0.0-darwin- MB
o x86.tar.gz

_static/images/gcloud_cluster_created.png
[04:55:39] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

ERROR: (gcloud.container.clusters.create) ResponseError: code=503, message=Project alert-result-161014 1is not fully
initialized with the default service accounts. Please try again later.

[04:55:48] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

Creating cluster jhub...done.

Created [https://container.googleapis.com/vl/projects/alert-result-161014/zones/us-centrall-a/clusters/jhub].
kubeconfig entry generated for jhub.

NAME ZONE MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

jhub us-centrall-a 1.5.3 104.154.128.254 nl-standard-1 1.5.3 3 RUNNING

[05:04:25] carol@cw-pro in ~ $

