
Zero to JupyterHub
Release 0.4

Chris Holdgraf

Apr 18, 2018

Step Zero: your Kubernetes cluster

1 Getting to Step Zero: your Kubernetes cluster 3
1.1 Creating a Kubernetes Cluster . 3
1.2 Step Zero: Kubernetes on Google Cloud . 3
1.3 Step Zero: Kubernetes on Microsoft Azure Container Service (AKS) 5
1.4 Step Zero: Kubernetes on Amazon Web Services (AWS) . 8
1.5 JupyterHub on Red Hat OpenShift . 10

2 Creating your JupyterHub 11
2.1 Getting started with JupyterHub . 11
2.2 Setting up Helm . 12
2.3 Setting up JupyterHub . 13
2.4 Turning Off JupyterHub and Computational Resources . 15

3 Customization Guide 19
3.1 Extending your JupyterHub setup . 19
3.2 Customizing the User Environment . 20
3.3 User Resources . 24
3.4 User storage in JupyterHub . 26
3.5 User Management . 29

4 Administrator Guide 31
4.1 The JupyterHub Architecture . 31
4.2 Debugging Kubernetes . 32
4.3 Authentication . 35
4.4 Speed and Optimization . 38
4.5 Security . 40
4.6 Upgrading your JupyterHub Kubernetes deployment . 44
4.7 FAQ . 46
4.8 Advanced Topics . 47
4.9 Appendix: Projecting deployment costs . 51

5 Resources from the community 55
5.1 Community-authored documentation . 55
5.2 Zero to JupyterHub Gallery of Deployments . 55

6 Reference 57
6.1 Helm Chart Configuration Reference . 57

i

6.2 Official JupyterHub and Project Jupyter Documentation . 62
6.3 Tools used in a JupyterHub Deployment . 62
6.4 Glossary . 66

7 Institutional support 67

ii

Zero to JupyterHub, Release 0.4

JupyterHub is a tool that allows you to quickly utilize cloud computing infrastructure to manage a hub that enables
your users to interact remotely with a computing environment that you specify. JupyterHub offers a useful way to
standardize the computing environment of a group of people (e.g., for a class of students or an analytics team), as well
as allowing people to access the hub remotely.

This growing collection of information will help you set up your own JupyterHub instance. It is in an early stage, so
the information and tools may change quickly.

If you have tips or deployments that you would like to share, see Resources from the community. If you see anything
that is incorrect or have any questions, feel free to reach out at the issues page.

Step Zero: your Kubernetes cluster 1

https://github.com/jupyterhub/jupyterhub
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues

Zero to JupyterHub, Release 0.4

2 Step Zero: your Kubernetes cluster

CHAPTER 1

Getting to Step Zero: your Kubernetes cluster

This section describes a Kubernetes cluster and outlines how to complete Step Zero: your Kubernetes cluster for
different cloud providers and infrastructure.

1.1 Creating a Kubernetes Cluster

Kubernetes’ documentation describes the many ways to set up a cluster. Here, we shall provide quick instructions for
the most painless and popular ways of getting setup in various cloud providers and on other infrastructure:

• Google Cloud

• Microsoft Azure

• Amazon AWS

• Red Hat OpenShift

Note:

• During the process of setting up JupyterHub, you’ll be creating some files for configuration purposes. It may be
helpful to create a folder for your JuypterHub deployment to keep track of these files.

• If you are concerned at all about security (you probably should be), see the Kubernetes best-practices guide for
information about keeping your Kubernetes infrastructure secure.

• Consult the Kubernetes documentation section *Picking the Right Solution* for other ways of setting up a
Kubernetes cluster.

1.2 Step Zero: Kubernetes on Google Cloud

Google Kubernetes Engine (GKE) is the simplest and most common way of setting up a Kubernetes Cluster. You may
be able to receive free credits for trying it out. You will need to connect your credit card or other payment method to

3

https://kubernetes.io/docs/setup/pick-right-solution/
http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html
https://kubernetes.io/docs/setup/pick-right-solution/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/free/

Zero to JupyterHub, Release 0.4

your google cloud account.

1. Go to https://console.cloud.google.com and log in.

2. Enable the Kubernetes Engine API.

3. Use your preferred command line interface.

You have two options: a) use the Google Cloud Shell (no installation needed) or b) install and use the gcloud
command-line tool. If you are unsure which to choose, we recommend beginning with option “a” and using the
Google Cloud Shell. Instructions for each are detailed below:

(a) Use the Google Cloud Shell. Start the Google Cloud Shell by clicking the button shown below. This will
start an interactive shell session within Google Cloud.

See the Google Cloud Shell docs for more information.

(b) Install and use the gcloud command line tool. This tool sends commands to Google Cloud and lets you
do things like create and delete clusters.

• Go to the gcloud command line tool downloads page to download and install the gcloud command
line tool.

• See the gcloud documentation for more information on the gcloud command line tool.

4. Install kubectl, which is a tool for controlling kubernetes. From the terminal, enter:

gcloud components install kubectl

5. Create a Kubernetes cluster on Google Cloud, by typing the following command into either the Google Cloud
shell or the gcloud command-line tool:

gcloud container clusters create <YOUR-CLUSTER> \
--num-nodes=3 \
--machine-type=n1-standard-2 \
--zone=us-central1-b

where:

• --num-nodes specifies how many computers to spin up. The higher the number, the greater the cost.

• --machine-type specifies the amount of CPU and RAM in each node. There is a variety of types to
choose from. Picking something appropriate here will have a large effect on how much you pay - smaller
machines restrict the max amount of RAM each user can have access to but allow more fine-grained

4 Chapter 1. Getting to Step Zero: your Kubernetes cluster

https://console.cloud.google.com/apis/api/container.googleapis.com/overview
https://cloud.google.com/shell/docs/
https://cloud.google.com/sdk/downloads
https://cloud.google.com/pubsub/docs/quickstart-cli
https://cloud.google.com/compute/docs/machine-types

Zero to JupyterHub, Release 0.4

scaling, reducing cost. The default (n1-standard-2) has 2CPUs and 7.5G of RAM each, and might
not be a good fit for all use cases!

• --zone specifies which data center to use. Pick something that is not too far away from your users. You
can find a list of them here.

6. To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

7. Give your account super-user permissions, allowing you to perform all the actions needed to set up JupyterHub.

kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole=cluster-admin \
--user=<YOUR-EMAIL-ADDRESS>

Congrats. Now that you have your Kubernetes cluster running, it’s time to begin Creating your JupyterHub.

1.3 Step Zero: Kubernetes on Microsoft Azure Container Service
(AKS)

1. Prepare your Azure shell environment. You have two options, one is to use the Azure interactive shell, the other
is to install the Azure command-line tools locally. Instructions for each are below.

• Using the Azure interactive shell. The Azure Portal contains an interactive shell that you can use to
communicate with your Kubernetes cluster. To access this shell, go to portal.azure.com and click on the
button below.

Note:

• If you get errors like could not retrieve token from local cache, try refresh-
ing your browser window.

• The first time you do this, you’ll be asked to create a storage account where your shell filesystem
will live.

• Install command-line tools locally. You can access the Azure CLI via a package that you can install
locally.

To do so, first follow the installation instructions in the Azure documentation. Then run the following
command to connect your local CLI with your account:

az login

1.3. Step Zero: Kubernetes on Microsoft Azure Container Service (AKS) 5

https://cloud.google.com/compute/docs/regions-zones/regions-zones#available
https://portal.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Zero to JupyterHub, Release 0.4

You’ll need to open a browser and follow the instructions in your terminal to log in.

2. Activate the correct subscription. Azure uses the concept of subscriptions to manage spending. You can get a
list of subscriptions your account has access to by running:

az account list --refresh --output table

Pick the subscription you want to use for creating the cluster, and set that as your default.

az account set -s <YOUR-CHOSEN-SUBSCRIPTION-NAME>

3. Create a resource group. Azure uses the concept of resource groups to group related resources together. We
need to create a resource group in a given data center location. We will create computational resources within
this resource group.

az group create \
--name=<RESOURCE-GROUP-NAME> \
--location=centralus \
--output table

where:

• --name specifies the name of your resource group. We recommend using something that
uniquely identifies this hub. For example, if you are creating a resource group for UC
Berkeley’s 2018 Spring Data100 Course, you may give it a <RESOURCE-GROUP-NAME> of
ucb_2018sp_data100_hub.

• --location specifies the location of the data center you want your resource to be in. In this case,
we used the centralus location. For other options, see the Azure list of locations that support
AKS.

• --output table specifies that the output should be in human readable format, rather than the
default JSON output. We shall use this with most commands when executing them by hand.

4. Enable the cloud APIs required before creating a cluster.

The following commands enable various Azure tools that we’ll need in creating and managing the JupyterHub.

az provider register --name Microsoft.Network --wait
az provider register --name Microsoft.Compute --wait
az provider register --name Microsoft.Storage --wait
az provider register --name Microsoft.ContainerService --wait

Note: Each of these commands may take up to several minutes to complete.

5. Choose a cluster name.

In the following steps we’ll run commands that ask you to input a cluster name. We recommend using something
descriptive and short. We’ll refer to this as <CLUSTER-NAME> for the remainder of this section.

The next step will create a few files on your filesystem, so first create a folder in which these files will go. We
recommend giving it the same name as your cluster:

mkdir <CLUSTER-NAME>
cd <CLUSTER-NAME>

6. Create an ssh key to secure your cluster.

6 Chapter 1. Getting to Step Zero: your Kubernetes cluster

https://github.com/Azure/AKS/blob/master/preview_regions.md
https://github.com/Azure/AKS/blob/master/preview_regions.md

Zero to JupyterHub, Release 0.4

ssh-keygen -f ssh-key-<CLUSTER-NAME>

It will prompt you to add a password, which you can leave empty if you wish. This will create a public key
named ssh-key-<CLUSTER-NAME>.pub and a private key named ssh-key-<CLUSTER-NAME>. Make
sure both go into the folder we created earlier, and keep both of them safe!

Note: This command will also print out something to your terminal screen. You don’t need to do anything with
this text.

7. Create an AKS cluster.

The following command will request a Kubernetes cluster within the resource group that we created earlier.

az aks create --name <CLUSTER-NAME> \
--resource-group <RESOURCE-GROUP-NAME> \
--ssh-key-value ssh-key-<CLUSTER-NAME>.pub \
--node-count 3 \
--node-vm-size Standard_D2s_v3 \
--kubernetes-version 1.8.2 \
--output table

where:

• --name is the name you want to use to refer to your cluster

• --resource-group is the ResourceGroup you created in step 4

• --ssh-key-value is the ssh public key created in step 7

• --node-count is the number of nodes you want in your kubernetes cluster

• --node-vm-size is the size of the nodes you want to use, which varies based on what you are using
your cluster for and how much RAM/CPU each of your users need. There is a list of all possible node
sizes for you to choose from, but not all might be available in your location.

• --kubernetes-version is the version of Kubernetes we want to use.

This should take a few minutes and provide you with a working Kubernetes cluster!

8. Install kubectl, a tool for accessing the Kubernetes API from the commandline:

az aks install-cli

9. Get credentials from Azure for kubectl to work:

az aks get-credentials \
--name <CLUSTER-NAME> \
--resource-group <RESOURCE-GROUP-NAME> \
--output table

where:

• --name is the name you gave your cluster in step 7

• --resource-group is the ResourceGroup you created in step 4

10. Check if your cluster is fully functional

kubectl get node

1.3. Step Zero: Kubernetes on Microsoft Azure Container Service (AKS) 7

https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
https://kubernetes.io/docs/reference/kubectl/overview/

Zero to JupyterHub, Release 0.4

The response should list three running nodes and their kubernetes versions! Each node should have the
status of Ready, note that this may take a few moments.

Note: Azure AKS is still in preview, and not all features might work as intended. In particular,

1. You have to not use RBAC, since AKS does not support it yet.

2. You should skip step 2 (granting RBAC rights) with the “initialization” section when setting up helm.

Congrats. Now that you have your Kubernetes cluster running, it’s time to begin Creating your JupyterHub.

1.4 Step Zero: Kubernetes on Amazon Web Services (AWS)

AWS does not have native support for Kubernetes, however there are many organizations that have put together their
own solutions and guides for setting up Kubernetes on AWS.

We like the Heptio guide, and recommend using this for setting up your cluster for clusters that span short periods
of time (a week long workshop, for example). However, if you are setting up a cluster that would need to run for
much longer, we recommend you use [kops](https://kubernetes.io/docs/getting-started-guides/kops/). It is a bit more
complex, but provides features (such as log collection & cluster upgrades) that are necessary to run a longer term
cluster.

Note: The Heptio deployment of Kubernetes on AWS should not be considered production-ready. See the introduc-
tion in the Heptio Kubernetes tutorial for information about what to expect.

1. Follow Step 1 of the Heptio guide, called Prepare your AWS Account.

This sets up your Amazon account with the credentials needed to run Kubernetes.

Note:

• Make sure that you keep the file downloaded when you create the SSH key. This will be needed later to
allow kubectl to interact with your Kubernetes cluster.

• You may find it helpful to “pin” the services we’ll be using to your AWS navbar. This makes it easier to
navigate in subsequent sessions. Click the “pin” icon at the top, then drag CloudFormation and EC2
into your navbar.

2. Deploy a Kubernetes template from Heptio.

Note: This section largely follows Step 2 of the Heptio guide.

AWS makes it possible to deploy computational resources in a “stack” using templates. Heptio has put together
a template for running Kubernetes on AWS. Click the button below to select the Heptio template, then follow
the instructions below.

You’ll be taken to an AWS page with a field already chosen under “Choose a template”. Simply hit “Next”.

Enter AWS instance information (page 1): On this page you’ll tell AWS what kind of hardware you need. Fill
in the following required fields:

• Stack Name can be anything you like.

8 Chapter 1. Getting to Step Zero: your Kubernetes cluster

security.html#use-role-based-access-control-rbac
https://s3.amazonaws.com/quickstart-reference/heptio/latest/doc/heptio-kubernetes-on-the-aws-cloud.pdf
https://kubernetes.io/docs/getting-started-guides/kops/
http://docs.heptio.com/content/tutorials/aws-cloudformation-k8s.html
http://docs.heptio.com/content/tutorials/aws-cloudformation-k8s.html
https://s3.amazonaws.com/quickstart-reference/heptio/latest/doc/heptio-kubernetes-on-the-aws-cloud.pdf
https://s3.amazonaws.com/quickstart-reference/heptio/latest/doc/heptio-kubernetes-on-the-aws-cloud.pdf

Zero to JupyterHub, Release 0.4

• Availability Zone is related to the location of the AWS resources. Choose an AWS location close
to your physical location or any other desired AWS location.

• Admin Ingress Location defines the locations from which you can access this cluster as an admin-
istrator. Enter 0.0.0.0/0 for the most permissive approach.

• SSH Key is a dropdown list of keys attached to your account. The one you created in Step 1 should be
listed here. This will allow you to SSH into the machines if you desire.

• Node Capacity defines the number of machines you’ve got available. This will depend on the
Instance Type that you choose. E.g., if you want each user to have 2GB and you expect 10 users,
choose a combination of Instance Type and Node Capacity that meets this requirement.

• Instance Type defines what kind of machine you’re requesting. See this list of instance types with
Amazon as well as this list of pricing for each instance type.

• Disk Size corresponds to the hard disk for each node. Note that this is different from the disks that
users will use for their own notebooks/data. This disk should be large enough to contain the size of any
Docker images you’re serving with the JupyterHub.

• Instance Type (Bastion Host) corresponds to a computer that allows for easy SSH access to
your Kubernetes cluster. This does not need to be a fancy computer. You may leave these as defaults. For
more information on the Bastion Host, see here.

Enter AWS instance information (page 2): On the second page you may leave all of these fields as is or
customize as you wish. When done, hit Next. Then confirm and hit Next once more.

AWS will now create the computational resources defined in the Heptio template (and according to the options
that you chose).

To see the status of the resources you’ve requested, see the CloudFormation page. You should see two
stacks being created, each will have the name you’ve requested. When they’re done creating, continue with the
guide.

Note: This often takes 15-20 minutes to finish. You’ll know it’s done when both stacks show the status
CREATE_COMPLETE.

3. Ensure that the latest version of kubectl is installed on your machine be following the install instructions.

4. Configure your kubectl to send instructions to the newly-created Kubernetes cluster. To do this, you’ll need
to copy a security file onto your computer. Heptio has pre-configured the command needed to do this. To
access it, from the CloudFormation page click on the stack you just created (the one without “k8s-stack”
in it). Below, there is an “Outputs” tab. Click on this, and look for a field called GetKubeConfigCommand.
Copy / paste that text into your terminal, replacing the path/to/myKey.pem with the path to the key you
downloaded in Step 1. It looks something like:

SSH_KEY="<path/to/varMyKey.pem>"; scp -i $SSH_KEY -o
ProxyCommand="ssh -i \"${SSH_KEY}\" ubuntu@<BastionHostPublicIP> nc
%h %p" ubuntu@<MasterPrivateIP>:~/kubeconfig ./kubeconfig

5. Tell Kubernetes to use this configuration file. Run:

export KUBECONFIG=$(pwd)/kubeconfig

6. Confirm that kubectl is connected to your Kubernetes cluster. Run:

kubectl get nodes

you should see a list of three nodes, each beginning with ip.

1.4. Step Zero: Kubernetes on Amazon Web Services (AWS) 9

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/on-demand/
http://docs.aws.amazon.com/quickstart/latest/linux-bastion/architecture.html
https://kubernetes.io/docs/user-guide/prereqs/
https://kubernetes.io/docs/user-guide/prereqs

Zero to JupyterHub, Release 0.4

7. Enable dynamic storage on your Kubernetes cluster. Create a file, storageclass.yml on your local com-
puter, and enter this text:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
annotations:

storageclass.beta.kubernetes.io/is-default-class: "true"
name: gp2

provisioner: kubernetes.io/aws-ebs
parameters:
type: gp2

Next, run this command:

kubectl apply -f storageclass.yml

This enables dynamic provisioning of disks, allowing us to automatically assign a disk per user when they log
in to JupyterHub.

8. Enable legacy authorization mode. This is temporarily required since the newer and more secure authorization
mode is not out of beta yet.

kubectl create clusterrolebinding permissive-binding \
--clusterrole=cluster-admin \
--user=admin \
--user=kubelet \
--group=system:serviceaccounts

This step should hopefully go away soon!

Congrats. Now that you have your Kubernetes cluster running, it’s time to begin Creating your JupyterHub.

1.5 JupyterHub on Red Hat OpenShift

OpenShift from RedHat is a cluster manager based on Kubernetes.

For setting up JupyterHub on OpenShift, check out the JupyterHub on OpenShift project. It provides an OpenShift
template based JupyterHub deployment. Zero to JupyterHub uses helm which is currently usable with OpenShift;
yet deploying helm on OpenShift is somewhat complicated (see RedHat’s blog post on Getting Started with Helm on
OpenShift).

1.5.1 Additional resources about Jupyter on OpenShift

• An excellent series of OpenShift blog posts on Jupyter and OpenShift authored by Red Hat developer, Graham
Dumpleton, are available on the OpenShift blog.

10 Chapter 1. Getting to Step Zero: your Kubernetes cluster

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#dynamic
https://openshift.org/
https://github.com/jupyter-on-openshift/jupyterhub-quickstart
https://helm.sh
https://blog.openshift.com/getting-started-helm-openshift/
https://blog.openshift.com/getting-started-helm-openshift/
https://blog.openshift.com/tag/jupyter/

CHAPTER 2

Creating your JupyterHub

This tutorial starts from Step Zero: your Kubernetes cluster and describes the steps needed for you to create a complete
initial JupyterHub deployment. This will use the JupyterHub Helm chart which provides sensible defaults for an initial
deployment.

To begin, go to Setting up Helm.

2.1 Getting started with JupyterHub

JupyterHub lets you create custom computing environments that can be accessed remotely (e.g., at a specific URL)
by multiple users.

This guide acts as an assistant to guide you through the process of setting up your JupyterHub deployment using
Kubernetes. It helps you connect and configure the following things:

• A cloud provider such Google Cloud, Microsoft Azure, Amazon EC2, and others

• Kubernetes to manage resources on the cloud

• Helm to configure and control Kubernetes

• Docker to use containers that standardize computing environments

• JupyterHub to manage users and deploy Jupyter notebooks

You already are well on your way to understanding what it means (procedurally) to deploy Jupyterhub.

2.1.1 Verifying JupyterHub dependencies

At this point, you should have completed Step Zero and have an operational Kubernetes cluster. You will already have
a cloud provider/infrastructure and kubernetes and docker installed.

If you need to create a Kubernetes cluster, see Creating a Kubernetes Cluster.

We also depend on Helm and the JupyterHub Helm chart for your JupyterHub deployment. We’ll deploy them in this
section. Let’s begin by moving on to Setting up Helm.

11

Zero to JupyterHub, Release 0.4

Note: For a more extensive description of the tools and services that JupyterHub depends upon, see our Tools used in
a JupyterHub Deployment page.

2.2 Setting up Helm

Helm, the package manager for Kubernetes, is a useful tool to install, upgrade and manage applications on a Kuber-
netes cluster. We will be using Helm to install and manage JupyterHub on our cluster.

2.2.1 Installation

The simplest way to install helm is to run Helm’s installer script at a terminal:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get |
→˓bash

Alternative methods for helm installation exist if you prefer to install without using the script.

2.2.2 Initialization

After installing helm on your machine, initialize helm on your Kubernetes cluster. At the terminal, enter:

1. Set up a ServiceAccount for use by Tiller, the server side component of helm.

kubectl --namespace kube-system create serviceaccount tiller

Azure AKS: If you’re on Azure AKS, you should now skip directly to step 3.**

2. Give the ServiceAccount RBAC full permissions to manage the cluster.

While most clusters have RBAC enabled and you need this line, you must skip this step if your kubernetes
cluster does not have RBAC enabled (for example, if you are using Azure AKS).

kubectl create clusterrolebinding tiller --clusterrole cluster-admin --
→˓serviceaccount=kube-system:tiller

3. Set up Helm on the cluster.

helm init --service-account tiller

This command only needs to run once per Kubernetes cluster.

2.2.3 Verify

You can verify that you have the correct version and that it installed properly by running:

helm version

It should provide output like:

12 Chapter 2. Creating your JupyterHub

https://helm.sh/
https://github.com/kubernetes/helm/blob/master/docs/install.md
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/admin/authorization/rbac/

Zero to JupyterHub, Release 0.4

Client: &version.Version{SemVer:"v2.8.1", GitCommit:
→˓"46d9ea82e2c925186e1fc620a8320ce1314cbb02", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.8.1", GitCommit:
→˓"46d9ea82e2c925186e1fc620a8320ce1314cbb02", GitTreeState:"clean"}

Make sure you have at least version 2.8.1!

If you receive an error that the Server is unreachable, do another helm version in 15-30 seconds, and it should
display the Server version.

Secure Helm

Ensure that tiller is secure from access inside the cluster:

kubectl --namespace=kube-system patch deployment tiller-deploy --type=json --
→˓patch='[{"op": "add", "path": "/spec/template/spec/containers/0/command",
→˓"value": ["/tiller", "--listen=localhost:44134"]}]'

2.2.4 Next Step

Congratulations. Helm is now set up. The next step is to install JupyterHub!

2.3 Setting up JupyterHub

Now that we have a Kubernetes cluster and helm setup, we can begin setting up a JupyterHub.

2.3.1 Prepare configuration file

This step prepares a configuration file (config file). We will use the YAML file format to specify JupyterHub’s config-
uration.

It’s important to save the config file in a safe place. The config file is needed for future changes to JupyterHub’s
settings.

For the following steps, use your favorite code editor. We’ll use the nano editor as an example.

1. Create a file called config.yaml. Using the nano editor, for example, entering nano config.yaml at the
terminal will start the editor and open the config file.

2. Create a random hex string to use as a security token. Run this command in a terminal

openssl rand -hex 32

Copy the output for use in the next step

3. Insert these lines into the config.yaml file. When editing YAML files, use straight quotes and spaces and
avoid using curly quotes or tabs. Substitute RANDOM_STRING below with the output of openssl rand
-hex 32 from step 2.

proxy:
secretToken: "<OUTPUT-OF-`openssl rand -hex 32`>"

2.3. Setting up JupyterHub 13

https://engineering.bitnami.com/articles/helm-security.html
create-k8s-cluster.html
setup-helm.html
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/GNU_nano

Zero to JupyterHub, Release 0.4

4. Azure AKS only If you’re on Microsoft Azure AKS, you must disable RBAC. Do so by putting the following
in config.yaml

rbac:
enabled: false

See the RBAC documentation for more details.

5. Save the config.yaml file.

2.3.2 Install JupyterHub

1. Let’s add the JupyterHub helm repository to your helm, so you can install JupyterHub from it. This makes it
easy to refer to the JupyterHub chart without having to use a long URL each time.

helm repo add jupyterhub https://jupyterhub.github.io/helm-chart/
helm repo update

This should show output like:

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "jupyterhub" chart repository
Update Complete. Happy Helming!

2. Now you can install the chart! Run this command from the directory that contains the config.yaml file to
spin up JupyterHub:

helm install jupyterhub/jupyterhub \
--version=v0.6 \
--name=<YOUR-RELEASE-NAME> \
--namespace=<YOUR-NAMESPACE> \
-f config.yaml

where:

• --name is an identifier used by helm to refer to this deployment. You need it when you are changing the
configuration of this install or deleting it. Use something descriptive that you will easily remember. For a
class called data8 you might wish set the name to data8-jupyterhub. In the future you can find out the
name by using helm list.

• --namespace is an identifier used by Kubernetes (among other things) to identify a particular applica-
tion that might be running on a single Kubernetes cluster. You can install many applications into the same
Kubernetes cluster, and each instance of an application is usually separated by being in its own namespace.
You’ll need the namespace identifier for performing any commands with kubectl.

We recommend providing the same value to --name and --namespace for now to avoid too much confusion,
but advanced users of Kubernetes and helm should feel free to use different values.

Note:

• This step may take a moment, during which time there will be no output to your terminal. JupyterHub is
being installed in the background.

• If you get a release named <YOUR-RELEASE-NAME> already exists error, then you should
delete the release by running helm delete --purge <YOUR-RELEASE-NAME>. Then reinstall by
repeating this step. If it persists, also do kubectl delete <YOUR-NAMESPACE> and try again.

14 Chapter 2. Creating your JupyterHub

security.html#use-role-based-access-control-rbac
https://github.com/kubernetes/helm/blob/master/docs/chart_repository.md
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Zero to JupyterHub, Release 0.4

If you’re pulling from a large Docker image you may get a Error: timed out waiting
for the condition error, add a --timeout=SOME-LARGE-NUMBER parameter to the helm
install command.

• The --version parameter corresponds to the version of the helm chart, not the version of JupyterHub.
Each version of the JupyterHub helm chart is paired with a specific version of JupyterHub. E.g., v0.5 of
the helm chart runs JupyterHub v0.8.

2. While Step 1 is running, you can see the pods being created by entering in a different terminal:

kubectl --namespace=<YOUR-NAMESPACE> get pod

3. Wait for the hub and proxy pod to begin running.

4. You can find the IP to use for accessing the JupyterHub with:

kubectl --namespace=<YOUR-NAMESPACE> get svc

The external IP for the proxy-public service should be accessible in a minute or two.

Note: If the IP for proxy-public is too long to fit into the window, you can find the longer version by
calling:

kubectl --namespace=<YOUR-NAMESPACE> describe svc proxy-public

5. To use JupyterHub, enter the external IP for the proxy-public service in to a browser. JupyterHub is running
with a default dummy authenticator so entering any username and password combination will let you enter the
hub.

Congratulations! Now that you have JupyterHub running, you can extend it in many ways. You can use a pre-built
image for the user container, build your own image, configure different authenticators, and more!

2.4 Turning Off JupyterHub and Computational Resources

When you are done with your hub, you should delete it so you are no longer paying money for it. The following
sections describe how to delete your JupyterHub resources on various cloud providers.

Tearing down your JupyterHub entails:

1. Deleting your Kubernetes namespace, which deletes all objects created and managed by Kubernetes

2. Deleting any computational resources you’ve requested from the cloud provider

3. Running a final check to make sure there aren’t any lingering resources that haven’t been deleted (e.g., storage
volumes in some cloud providers)

2.4.1 For all cloud providers

Delete the helm namespace

The steps in this section must be performed for all cloud providers first, before doing the cloud provider specific setup.

1. First, delete the helm release. This deletes all resources that were created by helm to make your jupyterhub.

2.4. Turning Off JupyterHub and Computational Resources 15

extending-jupyterhub.html

Zero to JupyterHub, Release 0.4

helm delete <YOUR-HELM-RELEASE-NAME> --purge

2. Next, delete the namespace the hub was installed in. This deletes any disks that may have been created to store
user’s data, and any IP addresses that may have been provisioned.

kubectl delete namespace <YOUR-NAMESPACE>

2.4.2 Google Cloud Platform

1. Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will delete the helm chart
and delete the hub’s namespace. This must be done before proceeding.

2. Delete the kubernetes cluster. You can list all the clusters you have.

gcloud container clusters list

You can then delete the one you want.

gcloud container clusters delete <CLUSTER-NAME> --zone=<CLUSTER-ZONE>

3. Double check to make sure all the resources are now deleted, since anything you have not deleted will cost
you money! You can check the web console (make sure you are in the right project and account) to verify that
everything has been deleted.

At a minimum, check the following under the Hamburger (left top corner) menu:

(a) Compute Engine -> Disks

(b) Container Engine -> Container Clusters

(c) Container Registry -> Images

(d) Networking -> Network Services -> Load Balancing

These might take several minutes to clear up, but they shouldn’t have anything related to your JupyterHub cluster
after you have deleted the cluster.

2.4.3 Microsoft Azure AKS

1. Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will delete the helm chart
and delete the hub’s namespace. This must be done before proceeding.

2. Delete your resource group. You can list your active resource groups with the following command

az group list --output table

You can then delete the one you want with the following command

az group delete --name <YOUR-GROUP-NAME>

Be careful to delete the correct Resource Group, as doing so will irreversibly delete all resources within the
group!

3. Double check to make sure all the resources are now deleted, since anything you have not deleted will cost you
money! You can check the web portal (check the “Resource Groups” page) to verify that everything has been
deleted.

16 Chapter 2. Creating your JupyterHub

https://console.cloud.google.com
https://portal.azure.com

Zero to JupyterHub, Release 0.4

These might take several minutes to clear up, but they shouldn’t have anything related to your JupyterHub cluster
after you have deleted the resource group.

2.4.4 Amazon Web Services (AWS)

1. Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will delete the helm chart
and delete the hub’s namespace. This must be done before proceeding.

2. The easiest way to delete your cloud resources on AWS is to use their website. Go to the CloudFormation
page. This should have a list of all running AWS stacks that you’ve created.

If you followed the JupyterHub guide, there should be two items, both containing the name that you chose for
this stack. For each item, click the checkbox next to it. Then, click Actions and finally Delete Stack.
Answer “yes” to any confirmation dialogues, and this should begin the process of deleting your Kubernetes
cluster.

Note: Sometimes AWS fails to delete parts of the stack on a first pass. Be sure to double-check that your stack has in
fact been deleted, and re-perform the actions above if needed.

2.4. Turning Off JupyterHub and Computational Resources 17

Zero to JupyterHub, Release 0.4

18 Chapter 2. Creating your JupyterHub

CHAPTER 3

Customization Guide

JupyterHub can be configured and customized to fit a variety of deployment requirements. If you would like to expand
JupyterHub, customize its setup, increase the computational resources available for users, or change authentication
services, this guide will walk you through the steps. See the Helm Chart Configuration Reference for a list of frequently
used configurable helm chart fields.

3.1 Extending your JupyterHub setup

The helm chart used to install JupyterHub has a lot of options for you to tweak. For a semi-complete list of the changes
you can apply via your helm-chart, see the Helm Chart Configuration Reference.

3.1.1 Applying configuration changes

The general method to modify your Kubernetes deployment is to:

1. Make a change to the config.yaml

2. Run a helm upgrade:

helm upgrade <YOUR_RELEASE_NAME> jupyterhub/jupyterhub --version=v0.6 -f
→˓config.yaml

Where <YOUR_RELEASE_NAME> is the parameter you passed to --name when installing jupyterhub with
helm install. If you don’t remember it, you can probably find it by doing helm list.

3. Wait for the upgrade to finish, and make sure that when you do kubectl
--namespace=<YOUR_NAMESPACE> get pod the hub and proxy pods are in Ready state. Your
configuration change has been applied!

For information about the many things you can customize with changes to your helm chart, see Customizing the User
Environment, User Resources, and Helm Chart Configuration Reference.

19

setup-jupyterhub.html#install-jupyterhub

Zero to JupyterHub, Release 0.4

3.2 Customizing the User Environment

Note: For a list of all the options you can configure with your helm chart, see the Helm Chart Configuration Reference.

This page contains instructions for a few common ways you can extend the user experience for your kubernetes
deployment.

The user environment is the set of packages, environment variables, and various files that are present when the user
logs into JupyterHub. The user may also see different tools that provide interfaces to perform specialized tasks, such
as RStudio, RISE, JupyterLab, and others.

Usually a docker image specifies the functionality and environment that you wish to provide to users. The following
sections will describe how to use existing Docker images, how to create custom images, and how to set environment
variables.

3.2.1 Use an existing Docker image

Note: The Docker image you are using must have the jupyterhub package installed in order to work. Moreover,
the version of jupyterhub must match the version installed by the helm chart that you’re using. For example, v0.5
of the helm chart uses jupyterhub==0.8.

Note: You can find the configuration for the default Docker image used in this guide here.

Using an existing Docker image, that someone else has written and maintained, is the simplest approach. For example,
Project Jupyter maintains the jupyter/docker-stacks repo, which contains ready to use Docker images. Each image
includes a set of commonly used science and data science libraries and tools.

The scipy-notebook image, which can be found in the docker-stacks repo, contains useful scientific program-
ming libraries pre-installed. This image may satisfy your needs. If you wish to use an existing image, such as the
scipy-notebook image, complete these steps:

1. Modify your config.yaml file to specify the image. For example:

singleuser:
image:

name: jupyter/scipy-notebook
tag: c7fb6660d096

Note: Container image name cannot be longer than 63 characters.

Always use an explicit tag, such as a specific commit.

Avoid using latest. Using latest might cause a several minute delay, confusion, or failures for users when
a new version of the image is released.

2. Apply the changes by following the directions listed in apply the changes. These directions will pre-pull the
image to all the nodes in your cluster. This process may take several minutes to complete.

Note: Docker images must have the jupyterhub package installed within them to be used in this manner.

20 Chapter 3. Customization Guide

https://github.com/jupyterhub/zero-to-jupyterhub-k8s/tree/master/images/singleuser-sample
https://github.com/jupyter/docker-stacks/
https://hub.docker.com/r/jupyter/scipy-notebook/
https://github.com/jupyter/docker-stacks/tree/master/scipy-notebook
https://github.com/jupyter/docker-stacks/tree/master/scipy-notebook
extending-jupyterhub.html#apply-config-changes

Zero to JupyterHub, Release 0.4

3.2.2 Build a custom Docker image with repo2docker

If you can’t find a pre-existing image that suits your needs, you can create your own image. The easiest way to do this
is with the package repo2docker.

Note: repo2docker lets you quickly convert a GitHub repository into a Docker image that can be used as a base for
your JupyterHub instance. Anything inside the GitHub repository will exist in a user’s environment when they join
your JupyterHub:

• If you include a requirements.txt file in the root level of the repository, repo2docker will pip
install the specified packages into the Docker image to be built.

• If you have an environment.yaml file, conda will create an environment based on this file’s specification.

• If you have a Dockerfile, repo2docker will ignore everything else and just use the Dockerfile.

Below we’ll cover how to use repo2docker to generate a Docker image and how to configure JupyterHub to build
off of this image:

1. Download and start Docker. You can do this by downloading and installing Docker. Once you’ve started
Docker, it will show up as a tiny background application.

2. Install repo2docker using pip:

pip install jupyter-repo2docker

If that command fails due to insufficient permissions, try it with the command option, user:

pip install --user jupyter-repo2docker

3. Create (or find) a GitHub repository you want to use. This repo should have all materials that you want your
users to be able to use. You may want to include a pip requirements.txt file to list packages, one per
file line, to install such as when using pip install. Specify the versions explicitly so the image is fully
reproducible. An example requirements.txt follows:

numpy==1.12.1
scipy==0.19.0
matplotlib==2.0

4. Use repo2docker to build a Docker image.

jupyter-repo2docker <YOUR-GITHUB-REPOSITORY> --image=gcr.io/<PROJECT-NAME>/<IMAGE-
→˓NAME>:<TAG> --no-run

This tells repo2docker to fetch master of the GitHub repository, and uses heuristics to build a docker
image of it.

Note:

• The project name should match your google cloud project’s name.

• Don’t use underscores in your image name. Other than this, the name can be anything memorable. This
bug with underscores will be fixed soon.

• The tag should be the first 6 characters of the SHA in the GitHub commit desired for building the image
since this improves reproducibility.

3.2. Customizing the User Environment 21

https://github.com/jupyter/repo2docker
https://store.docker.com/search?offering=community&platform=desktop%2Cserver&q=&type=edition
https://pip.readthedocs.io/en/latest/user_guide/#requirements-files

Zero to JupyterHub, Release 0.4

5. Push the newly-built Docker image to the cloud. You can either push this to Docker Hub or to the gcloud
docker repository. Here we’ll demonstrate pushing to the gcloud repository:

gcloud docker -- push gcr.io/<project-name>/<image-name>:<tag>

6. Edit the JupyterHub configuration to build from this image. Edit config.yaml file to include these lines
in it:

singleuser:
image:

name: gcr.io/<project-name>/<image-name>
tag: <tag>

This step can be done automatically by setting a flag if desired.

7. Tell helm to update JupyterHub to use this configuration. Use the standard method to apply the changes to
the config.

8. Restart your notebook if you are already logged in. If you already have a running JupyterHub session, you’ll
need to restart it (by stopping and starting your session from the control panel in the top right). New users won’t
have to do this.

Note: The contents of your GitHub repository might not show up if you have enabled persistent storage.
Disable persistent storage if you want the GitHub repository contents to show up.

9. Enjoy your new computing environment! You should now have a live computing environment built off of the
Docker image we’ve created.

3.2.3 Use JupyterLab by default

Warning: As JupyterLab is a quickly-evolving tool right now, it is important to use recent versions of JupyterLab.
If you install JupyterLab with conda, make sure to use the ‘‘conda-forge‘‘ channel instead of ‘‘default‘‘.

JupyterLab is the next generation user interface for Project Jupyter. It can be used with JupyterHub, both as an optional
interface and as a default.

In addition, a JupyterLab extension, called JupyterLab-Hub, provides a nice UI for accessing the JupyterHub control
panel from JupyterLab. These instructions show how to install both JupyterLab and JupyterLab-Hub.

Note: If JupyterLab is installed on your hub (and with or without “JupyterLab Hub” installed), users can always
switch to the classic Jupyter Notebook by selecting menu item “Help >> Launch Classic Notebook” or by replacing
/lab with /tree in the URL (if the server is running). Similarly, you can access JupyterLab even if it is not the
default by replacing /tree in the URL with /lab.

1. Install JupyterLab and the JupyterLab Hub extension in your user image, for example in your Dockerfile:

FROM jupyter/base-notebook:27ba57364579

...
ARG JUPYTERLAB_VERSION=0.31.12
RUN pip install jupyterlab==$JUPYTERLAB_VERSION \

(continues on next page)

22 Chapter 3. Customization Guide

extending-jupyterhub.html#apply-config-changes
http://jupyterlab.readthedocs.io/en/stable/index.html
https://github.com/jupyterlab/jupyterlab#installation
https://github.com/jupyterhub/jupyterlab-hub#installation

Zero to JupyterHub, Release 0.4

(continued from previous page)

&& jupyter labextension install @jupyterlab/hub-extension
...

2. Enable JupyterLab in your Helm configuration by adding the following snippet:

hub:
extraEnv:

JUPYTER_ENABLE_LAB: 1
extraConfig: |

c.KubeSpawner.cmd = ['jupyter-labhub']

3. If you want users to launch automatically into JupyterLab instead of the classic notebook, set the following
setting in your Helm configuration:

singleuser:
defaultUrl: "/lab"

This will put users into JupyterLab when they launch their server.

Note: JupyterLab is in beta, so use with caution!

3.2.4 Set environment variables

Another way to affect your user’s environment is by setting values for environment variables. While you can set them
up in your Docker image, it is often easier to set them up in your helm chart.

To set them up in your helm chart, edit your config.yaml file and apply the changes. For example, this code
snippet will set the environment variable EDITOR to the value vim:

singleuser:
extraEnv:
EDITOR: "vim"

You can set any number of static environment variables in the config.yaml file.

Users can read the environment variables in their code in various ways. In Python, for example, the following code
will read in an environment variable:

import os
my_value = os.environ["MY_ENVIRONMENT_VARIABLE"]

Other languages will have their own methods of reading these environment variables.

3.2.5 Pre-populating user’s $HOME directory with files

When persistent storage is enabled (which is the default), the contents of the docker image’s $HOME directory will
be hidden from the user. To make these contents visible to the user, you must pre-populate the user’s filesystem. To
do so, you would include commands in the config.yaml that would be run each time a user starts their server. The
following pattern can be used in config.yaml:

3.2. Customizing the User Environment 23

extending-jupyterhub.html#apply-config-changes

Zero to JupyterHub, Release 0.4

singleuser:
lifecycleHooks:
postStart:

exec:
command: ["your", "command", "here"]

Note that this command will be run from the $HOME location of the user’s running container, meaning that commands
that place files relative to ./ will result in users seeing those files in their home directory. You can use commands like
wget to place files where you like.

However, keep in mind that this command will be run each time a user starts their server. For this reason, we
recommend using nbgitpuller to synchronize your user folders with a git repository.

Using nbgitpuller for synchronizing a folder

We recommend using the tool nbgitpuller to synchronize a folder in your user’s filesystem with a git repository.

To use nbgitpuller, first make sure that you install it in your Docker image. Once this is done, you’ll have access
to the nbgitpuller CLI from within JupyterHub. You can run it with a postStart hook with the following
configuration

singleuser:
lifecycleHooks:
postStart:

exec:
command: ["gitpuller", "https://github.com/data-8/materials-fa17", "master",

→˓"materials-fa"]

This will synchronize the master branch of the repository to a folder called $HOME/materials-fa each time a
user logs in. See the nbgitpuller documentation for more information on using this tool.

Warning: nbgitpuller will attempt to automatically resolve merge conflicts if your user’s repository has
changed since the last sync. You should familiarize yourself with the nbgitpuller merging behavior prior to using
the tool in production.

3.3 User Resources

Note: For a list of all the options you can configure with your helm chart, see the Helm Chart Configuration Reference.

User resources include the CPU, RAM, and Storage which JupyterHub provides to users. Most of these can be
controlled via modifications to the Helm Chart. For information on deploying your modifications to the JupyterHub
deployment, see Applying configuration changes.

Since JupyterHub can serve many different types of users, JupyterHub managers and administrators must be able to
flexibly allocate user resources, like memory or compute. For example, the Hub may be serving power users with
large resource requirements as well as beginning users with more basic resource needs. The ability to customize the
Hub’s resources to satisfy both user groups improves the user experience for all Hub users.

24 Chapter 3. Customization Guide

https://github.com/data-8/nbgitpuller
https://github.com/data-8/nbgitpuller#installation
https://github.com/data-8/nbgitpuller
https://github.com/data-8/nbgitpuller#merging-behavior

Zero to JupyterHub, Release 0.4

3.3.1 Set user memory and CPU guarantees / limits

Each user on your JupyterHub gets a slice of memory and CPU to use. There are two ways to specify how much users
get to use: resource guarantees and resource limits.

A resource guarantee means that all users will have at least this resource available at all times, but they may be given
more resources if they’re available. For example, if users are guaranteed 1G of RAM, users can technically use more
than 1G of RAM if these resources aren’t being used by other users.

A resource limit sets a hard limit on the resources available. In the example above, if there were a 1G memory limit,
it would mean that users could use no more than 1G of RAM, no matter what other resources are being used on the
machines.

By default, each user is guaranteed 1G of RAM. All users have at least 1G, but they can technically use more if it
is available. You can easily change the amount of these resources, and whether they are a guarantee or a limit, by
changing your config.yaml file. This is done with the following structure.

singleuser:
memory:

limit: 1G
guarantee: 1G

This sets a memory limit and guarantee of 1G. Kubernetes will make sure that each user will always have access to
1G of RAM, and requests for more RAM will fail (your kernel will usually die). You can set the limit to be higher
than the guarantee to allow some users to use larger amounts of RAM for a very short-term time (e.g. when running a
single, short-lived function that consumes a lot of memory).

Similarly, you can limit CPU as follows:

singleuser:
cpu:

limit: .5
guarantee: .5

This would limit your users to a maximum of .5 of a CPU (so 1/2 of a CPU core), as well as guarantee them that same
amount.

Note: Remember to apply the change after changing your config.yaml file!

3.3.2 Modifying user storage type and size

See the User storage in JupyterHub for information on how to modify the type and size of storage that your users have
access to.

3.3.3 Expanding and contracting the size of your cluster

You can easily scale up or down your cluster’s size to meet usage demand or to save cost when the cluster is not being
used. This is particularly useful when you have predictable spikes in usage. For example, if you are organizing and
running a workshop, resizing a cluster gives you a way to save cost and prepare JupyterHub before the event. For
example:

• One week before the workshop: You can create the cluster, set everything up, and then resize the cluster to
zero nodes to save cost.

3.3. User Resources 25

Zero to JupyterHub, Release 0.4

• On the day of the workshop: You can scale the cluster up to a suitable size for the workshop. This workflow
also helps you avoid scrambling on the workshop day to set up the cluster and JupyterHub.

• After the workshop: The cluster can be deleted.

The following sections describe how to resize the cluster on various cloud platforms.

Google Cloud Platform

Use the resize command and provide a new cluster size (i.e. number of nodes) as a command line option --size:

gcloud container clusters resize \
<YOUR-CLUSTER-NAME> \
--size <NEW-SIZE> \
--zone <YOUR-CLUSTER-ZONE>

To display the cluster’s name, zone, or current size, use the command:

gcloud container clusters list

After resizing the cluster, it may take a couple of minutes for the new cluster size to be reported back as the service
is adding or removing nodes. You can find the true count of currently ‘ready’ nodes using kubectl get node to
report the current Ready/NotReady status of all nodes in the cluster.

3.4 User storage in JupyterHub

For the purposes of this guide, we’ll describe “storage” as a “volume” - a location on a disk where a user’s data resides.

Kubernetes handles the creation and allocation of persistent volumes, under-the-hood it uses the cloud provider’s API
to issue the proper commands. To that extent most of our discussion around volumes will describe Kubernetes objects.

JupyterHub uses Kubernetes to manage user storage. There are two primary Kubernetes objects involved in allocating
storage to pods:

• A PersistentVolumeClaim (PVC) specifies what kind of storage is required. Its configuration is specified
in your config.yaml file.

• A PersistentVolume (PV) is the actual volume where the user’s data resides. It is created by Kubernetes
using details in a PVC.

As Kubernetes objects, they can be queried with the standard kubectl commands (e.g., kubectl
--namespace=<your-namespace> get pvc)

In JupyterHub, each user gets their own PersistentVolumeClaim object, representing the data attached to their
account. When a new user starts their JupyterHub server, a PersistentVolumeClaim is created for that user.
This claim tells Kubernetes what kind of storage (e.g., ssd vs. hd) as well as how much storage is needed. Kubernetes
checks to see whether a PersistentVolume object for that user exists (since this is a new user, none will exist). If
no PV object exists, then Kubernetes will use the PVC to create a new PV object for the user.

Now that a PV exists for the user, Kubernetes next must attach (or “mount”) that PV to the user’s pod (which runs user
code). Once this is accomplished, the user will have access to their PV within JupyterHub. Note that this all happens
under-the-hood and automatically when a user logs in.

PersistentVolumeClaims and PersistentVolumes are not deleted unless the
PersistentVolumeClaim is explicitly deleted by the JupyterHub administrator. When a user shuts down
their server, their user pod is deleted and their volume is detached from the pod, but the PVC and PV objects still exist.
In the future, when the user logs back in, JupyterHub will detect that the user has a pre-existing PVC and will simply
attach it to their new pod, rather than creating a new PVC.

26 Chapter 3. Customization Guide

Zero to JupyterHub, Release 0.4

3.4.1 How can this process break down?

When Kubernetes uses the PVC to create a new user PV, it is sending a command to the underlying API of whatever
cloud provider Kubernetes is running on. Occasionally, the request for a specific PV might fail - for example, if your
account has reached the limit in the amount of disk space available.

Another common issue is limits on the number of volumes that may be simultaneously attached to a node in your
cluster. Check your cloud provider for details on the limits of storage resources you request.

Note: Some cloud providers have a limited number of disks that can be attached to each node. Since JupyterHub
allocates one disk per user for persistent storage, this limits the number of users that can be running in a node at any
point of time. If you need users to have persistent storage, and you end up hitting this limit, you must use more nodes
in order to accommodate the disk for each user. In this case, we recommend allocating fewer resources per node (e.g.
RAM) since you’ll have fewer users packed onto a single node.

3.4.2 Configuration

Most configuration for storage is done at the cluster level and is not unique to JupyterHub. However, some bits are,
and we will demonstrate here how to configure those.

Note that new PVCs for pre-existing users will not be created unless the old ones are destroyed. If you update your
users’ PVC config via config.yaml, then any new users will have the new PVC created for them, but old users will
not. To force an upgrade of the storage type for old users, you will need to manually delete their PVC (e.g. kubectl
--namespace=<your-namespace> delete pvc <pvc-name>). This will delete all of the user’s data
so we recommend backing up their filesystem first if you want to retain their data.

After you delete the user’s PVC, upon their next log-in a new PVC will be created for them according to your updated
PVC specification.

Type of storage provisioned

A StorageClass object is used to determine what kind of PersistentVolumes are provisioned for your users. Most
popular cloud providers have a StorageClass marked as default. You can find out your default StorageClass
by doing:

kubectl get storageclass

and looking for the object with (default) next to its name.

To change the kind of PersistentVolumes provisioned for your users,

1. Create a new StorageClass object following the kubernetes documentation

2. Specify the name of the StorageClass you just created in config.yaml

singleuser:
storage:

dynamic:
storageClass: <storageclass-name>

3. Do a helm upgrade

Note that this will only affect new users who are logging in. We recommend you do this before users start heavily
using your cluster.

We will provide examples for popular cloud providers here, but will generally defer to the Kubernetes documentation.

3.4. User storage in JupyterHub 27

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Zero to JupyterHub, Release 0.4

Google Cloud

On Google Cloud, the default StorageClass will provision Standard Google Persistent Disks. These run on Hard
Disks. For more performance, you may want to use SSDs. To use SSDs, you can create a new StorageClass by
first putting the following yaml into a new file. We recommend a descriptive name such as storageclass.yaml,
which we’ll use below:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: jupyterhub-user-ssd
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-ssd
zones: <your-cluster-zone>

Replace <your-cluster-zone> with the Zone in which you created your cluster (you can find this with gcloud
container clusters list).

Next, create this object by running kubectl apply -f storageclass.yaml from the commandline. The
Kubernetes Docs have more information on what the various fields mean. The most important field is parameters.
type, which specifies the type of storage you wish to use. The two options are:

• pd-ssd makes StorageClass provision SSDs.

• pd-standard will provision non-SSD disks.

Once you have created this StorageClass, you can configure your JupyterHub’s PVC template with the following
in your config.yaml:

singleuser:
storage:
dynamic:

storageClass: jupyterhub-user-ssd

Note that for storageClass: we use the name that we specified above in metadata.name.

Size of storage provisioned

You can set the size of storage requested by JupyterHub in the PVC in your config.yaml.

storage:
capacity: 2Gi

This will request a 2Gi volume per user. The default requests a 10Gi volume per user.

We recommend you use the IEC Prefixes (Ki, Mi, Gi, etc) for specifying how much storage you want. 2Gi (IEC Prefix)
is (2 * 1024 * 1024 * 1024) bytes, while 2G (SI Prefix) is (2 * 1000 * 1000 * 1000) bytes.

3.4.3 Turn off per-user persistent storage

If you do not wish for users to have any persistent storage, it can be turned off. Edit the config.yaml file and set
the storage type to none:

28 Chapter 3. Customization Guide

https://cloud.google.com/compute/docs/disks/#pdspecs
https://kubernetes.io/docs/concepts/storage/storage-classes/#gce
https://physics.nist.gov/cuu/Units/binary.html

Zero to JupyterHub, Release 0.4

singleuser:
storage:
type: none

Next apply the changes.

After the changes are applied, new users will no longer be allocated a persistent $HOME directory. Any currently
running users will still have access to their storage until their server is restarted. You might have to manually delete
current users’ PVCs with kubectl to reclaim any cloud disks that might have allocated. You can get a current list of
PVCs with:

kubectl --namespace=<your-namespace> get pvc

You can then delete the PVCs you do not want with:

kubectl --namespace=<your-namespace> delete pvc <pvc-name>

Remember that deleting someone’s PVCs will delete all their data, so do so with caution!

3.5 User Management

This section describes management of users and their permissions on JupyterHub.

3.5.1 Culling user pods

JupyterHub will automatically delete any user pods that have no activity for a period of time. This helps free up
computational resources and keeps costs down if you are using an autoscaling cluster. When these users navigate back
to your JupyterHub, they will have to start their server again, and the state of their previous session (variables they’ve
created, any in-memory data, etc) will be lost. This is known as culling.

Note: In JupyterHub, “inactivity” is defined as no response from the user’s browser. JupyterHub constantly pings the
user’s JupyterHub browser session to check whether it is open. This means that leaving the computer running with the
JupyterHub window open will not be treated as inactivity.

To disable culling, put the following into config.yaml:

cull:
enabled: false

By default, JupyterHub will run the culling process every ten minutes and will cull any user pods that have been
inactive for more than one hour. You can configure this behavior in your config.yaml file with the following
fields:

cull:
timeout: <max-idle-seconds-before-user-pod-is-deleted>
every: <number-of-seconds-this-check-is-done>

Note: While JupyterHub automatically runs the culling process, it is not a replacement for keeping an eye on your
cluster to make sure resources are being used as expected.

3.5. User Management 29

Zero to JupyterHub, Release 0.4

3.5.2 Admin Users

JupyterHub has the concept of admin users who have special rights. They can start / stop other user’s servers, and
optionally access user’s notebooks. They will see a new Admin button in their Control Panel which will take them to
an Admin Panel where they can perform all these actions.

You can specify a list of admin users in your config.yaml:

auth:
admin:
users:

- adminuser1
- adminuser2

By default, admins can access user’s notebooks. If you wish to disable this, use this in your config.yaml:

auth:
admin:
access: false

3.5.3 Authenticating Users

For information on authenticating users in JupyterHub, see the Authentication guide.

30 Chapter 3. Customization Guide

http://jupyterhub.readthedocs.io/en/latest/getting-started/authenticators-users-basics.html#configure-admins-admin-users
authentication.html

CHAPTER 4

Administrator Guide

This section provides information on managing and maintaining a staging or production deployment of JupyterHub. It
has considerations for managing cloud-based deployments and tips for maintaining your deployment.

4.1 The JupyterHub Architecture

The JupyterHub Helm Chart manages resources in the cloud using Kubernetes. There are several moving pieces that,
together, handle authenticating users, pulling a Docker image specified by the administrator, generating the user pods
in which users will work, and connecting users with those pods.

The following diagram gives a high-level overview of the many pieces of JupyterHub, and how they fit together in this
process:

31

Zero to JupyterHub, Release 0.4

4.2 Debugging Kubernetes

Sometimes your JupyterHub deployment doesn’t behave the way you’d expect. This section provides some tips on
debugging and fixing some common problems.

4.2.1 Debugging commands

In order to debug your JupyterHub deployment, you need to be able to inspect the state of the resources being used.
The following are a few common commands for debugging.

Real world scenario: Let’s say you’ve got a JupyterHub deployed, and a user tells you that they are experiencing
strange behavior. Let’s take a look at our deployment to figure out what is going on.

Note: For our real world scenario, we’ll assume that our Kubernetes namespace is called jhub. Your namespace
may be called something different

kubectl get pod

To list all pods in your Kubernetes deployment:

kubectl --namespace=jhub get pod

This will output a list of all pods being used in the deployment.

Real world scenario: In our case, we see two pods for the JupyterHub infrastructure (hub and proxy) as well as
one user pod that was created when somebody logged in to the JupyterHub.

Here’s an example of the output:

32 Chapter 4. Administrator Guide

Zero to JupyterHub, Release 0.4

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-3311438805-xnfvp 1/1 Running 0 2m
jupyter-choldgraf 0/1 ErrImagePull 0 25s
proxy-1227971824-mn2wd 1/1 Running 0 5h

Here we can see the two JupyterHub pods, as well as a single user pod. Note that all user pods will begin with
jupyter-.

In particular, keep an eye on the STATUS column. If a given pod contains something other than Running, then
something may be wrong.

In this case, we can see that our user’s pod is in the ErrImagePull state. This generally means that there’s some-
thing wrong with the Docker image that is defined in singleuser in our helm chart config. Let’s dig further. . .

kubectl describe pod

To see more detail about the state of a specific pod, use the following command:

kubectl --namespace=jhub describe pod <POD_NAME>

This will output several pieces of information, including configuration and settings for the pod. The final section you’ll
see is a list of recent events. These can be particularly informative, as often an error will show up in this section.

Real world scenario: In our case, one of the lines in the events page displays an error:

$ kubectl --namespace=jhub describe pod jupyter-choldgraf
...
2m 52s 4 kubelet, gke-jhubtest-default-pool-52c36683-
→˓jv6r spec.containers{notebook} Warning Failed Failed
→˓to pull image "jupyter/scipy-notebook:v0.4": rpc error: code = 2 desc = Error
→˓response from daemon: {"message":"manifest for jupyter/scipy-notebook:v0.4 not found
→˓"}
...

It seems there is indeed something wrong with the Docker image. Let’s confirm this by getting another view on the
events that have transpired in the pod.

kubectl logs

If you only want to see the latest logs for a pod, use the following command:

kubectl --namespace=jhub logs <POD_NAME>

This will show you the logs from the pod, which often contain useful information about what is going wrong. Parse
these logs to see if something is generating an error.

Real world scenario: In our case, we get this line back:

$ kubectl --namespace=jhub logs jupyter-choldgraf
Error from server (BadRequest): container "notebook" in pod "jupyter-choldgraf" is
→˓waiting to start: trying and failing to pull image

Now we are sure that something is wrong with our Dockerfile. Let’s check our config.yaml file for the section
where we specify the user’s Docker image. Here we see our problem:

4.2. Debugging Kubernetes 33

Zero to JupyterHub, Release 0.4

singleuser:
image:

name: jupyter/scipy-notebook

We haven’t specified a tag for our Docker image! Not specifying a tag will cause it to default to v0.4, which isn’t
what we want and is causing the pod to fail.

To fix this, let’s add a tag to our config.yaml file:

singleuser:
image:

name: jupyter/scipy-notebook
tag: ae885c0a6226

Then run a helm upgrade:

helm upgrade jhub jupyterhub/jupyterhub --version=v0.6 -f config.yaml

where jhub is the helm release name (substitute the release name that you chose during setup).

Note: Depending on the size of the Docker image, this may take a while to complete.

Right after you run this command, let’s once again list the pods in our deployment:

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-2653507799-r7wf8 0/1 ContainerCreating 0 31s
hub-3311438805-xnfvp 1/1 Terminating 0 14m
jupyter-choldgraf 0/1 ImagePullBackOff 0 12m
proxy-deployment-1227971824-mn2wd 1/1 Running 0 5h

Here we can see one hub pod being destroyed, and another (based on the upgraded helm chart) being created. We
also see our broken user pod, which will not be deleted automatically. Let’s manually delete it so a newer working
pod can be started.:

$ kubectl --namespace=jhub delete pod jupyter-choldgraf

Finally, we’ll tell our user to log back in to the JupyterHub. Then let’s list our running pods once again:

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-2653507799-r7wf8 1/1 Running 0 3m
jupyter-choldgraf 1/1 Running 0 18s
proxy-deployment-1227971824-mn2wd 1/1 Running 0 5h

And now we see that we have a running user pod!

Note that many debugging situations are not as straightforward as this one. It will take some time before you get a feel
for the errors that Kubernetes may throw at you, and how these are tied to your configuration files.

4.2.2 Troubleshooting Examples

The following sections contain some case studies that illustrate some of the more common bugs / gotchas that you
may experience using JupyterHub with Kubernetes.

34 Chapter 4. Administrator Guide

Zero to JupyterHub, Release 0.4

Hub fails to start

Symptom: following kubectl get pod, the hub pod is in Error or CrashLoopBackoff state, or appears
to be running but accessing the website for the JupyterHub returns an error message in the browser).

Investigating: the output of kubectl --namespace=jhub logs hub... shows something like:

File "/usr/local/lib/python3.5/dist-packages/jupyterhub/proxy.py", line 589, in get_
→˓all_routes
resp = yield self.api_request('', client=client)

tornado.httpclient.HTTPError: HTTP 403: Forbidden

Diagnosis: This is likely because the hub pod cannot communicate with the proxy pod API, likely because of a
problem in the secretToken that was put in config.yaml.

Fix: Follow these steps:

1. Create a secret token:

openssl rand -hex 32

2. Add the token to config.yaml like so:

proxy:
secretToken: '<output of `openssl rand -hex 32`>'

3. Redeploy the helm chart:

helm upgrade jhub jupyterhub/jupyterhub -f config.yaml

4.3 Authentication

Authentication allows you to control who has access to your JupyterHub deployment. There are many options available
to you in controlling authentication, many of which are described below.

4.3.1 Authenticating with OAuth2

JupyterHub’s oauthenticator has support for enabling your users to authenticate via a third-party OAuth provider,
including GitHub, Google, and CILogon.

Follow the service-specific instructions linked on the oauthenticator repository to generate your JupyterHub instance’s
OAuth2 client ID and client secret. Then declare the values in the helm chart (config.yaml).

Here are example configurations for common authentication services. Note that in each case, you need to get the
authentication credential information before you can configure the helm chart for authentication.

GitHub

GitHub is the largest hosting service for git repositories. It is free to create an account at GitHub, and relatively
straightforward to set up OAuth credentials so that users can authenticate with their GitHub username/password.

To create OAuth credentials on GitHub, follow these steps:

• Click your profile picture -> settings -> developer settings

• Make sure you’re on the “OAuth Apps” tab, then click “New OAuth App”

4.3. Authentication 35

https://github.com/jupyterhub/oauthenticator
https://github.com/jupyterhub/oauthenticator

Zero to JupyterHub, Release 0.4

• Fill out the forms (you’ll need your hub address) and generate your ID/Secret.

Below is the structure to use in order to authenticate with GitHub.

auth:
type: github
github:
clientId: "y0urg1thubc1ient1d"
clientSecret: "an0ther1ongs3cretstr1ng"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

By default this will allow any GitHub user to access your JupyterHub. You can restrict access to members of one or
more GitHub organisations.

auth:
type: github
github:
...
org_whitelist:

- "SomeOrgName"
scopes:
- "read:org"

Note: auth.scopes is optional. Without this members of an organisation must set their membership to Public to
login. If this is set to read:org private members can login, but users must grant JupyterHub additional privileges to
read some private information. Changing auth.scopes will not change the scope for existing OAuth tokens, you
must invalidate them.

Google

Google authentication is used by many universities (it is part of the “G Suite”). Note that using Google authentication
requires your Hub to have a domain name (it cannot only be accessible via an IP address). For more information on
authenticating with Google oauth, see the Full Example of Google OAuth2.

auth:
type: google
google:
clientId: "yourlongclientidstring.apps.googleusercontent.com"
clientSecret: "adifferentlongstring"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
hostedDomain: "youruniversity.edu"
loginService: "Your University"

CILogon

auth:
type: cilogon
github:
clientId: "y0urc1logonc1ient1d"
clientSecret: "an0ther1ongs3cretstr1ng"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

36 Chapter 4. Administrator Guide

https://help.github.com/articles/publicizing-or-hiding-organization-membership/
https://developer.github.com/apps/building-oauth-apps/scopes-for-oauth-apps/

Zero to JupyterHub, Release 0.4

Globus

Globus Auth is a foundational identity and access management platform service designed to address unique needs of
the science and engineering community. Globus provides cloud-based services for reliably moving, sharing, publishing
and discovering data, whether your files live on a supercomputer, lab cluster, tape archive, public cloud, or your own
laptop. Start a Globus app here!

auth:
type: globus
globus:
clientId: "y0urc1logonc1ient1d"
clientSecret: "an0ther1ongs3cretstr1ng"
callbackUrl: "https://<your_jupyterhub_host>/hub/oauth_callback"
identityProvider: "youruniversity.edu"

OpenID Connect

OpenID Connect is an identity layer on top of the OAuth 2.0 protocol, implemented by various servers and services.
While OpenID Connect endpoint discovery is not supported by oauthentiator, you can still configure JupyterHub to
authenticate with OpenID Connect providers by specifying all endpoints in GenericOAuthenticator.

Here’s an example for authenticating against keycloak, after you configure an OIDC Client and obtain the confidential
client credentials.

hub:
extraEnv:
OAUTH2_AUTHORIZE_URL: https://${host}/auth/realms/${realm}/protocol/openid-

→˓connect/auth
OAUTH2_TOKEN_URL: https://${host}/auth/realms/${realm}/protocol/openid-connect/

→˓token
auth:

type: custom
custom:
className: oauthenticator.generic.GenericOAuthenticator
config:

client_id: "y0urc1logonc1ient1d"
client_secret: "an0ther1ongs3cretstr1ng"
token_url: https://${host}/auth/realms/${realm}/protocol/openid-connect/token
userdata_url: https://${host}/auth/realms/${realm}/protocol/openid-connect/

→˓userinfo
userdata_method: GET
userdata_params: {'state': 'state'}
username_key: preferred_username

4.3.2 Full Example of Google OAuth2

If your institution is a G Suite customer that integrates with Google services such as Gmail, Calendar, and Drive, you
can authenticate users to your JupyterHub using Google for authentication.

Note: Google requires that you specify a fully qualified domain name for your hub rather than an IP address.

1. Log in to the Google API Console.

4.3. Authentication 37

https://developers.globus.org/
https://openid.net/connect
https://openid.net/developers/certified/#OPServices
http://www.keycloak.org/docs/3.4/securing_apps/index.html#endpoints
http://www.keycloak.org/docs/3.4/server_admin/index.html#oidc-clients
https://gsuite.google.com
https://console.developers.google.com

Zero to JupyterHub, Release 0.4

2. Select a project > Create a project. . . and set ‘Project name’. This is a short term that is only displayed in the
console. If you have already created a project you may skip this step.

3. Type “Credentials” in the search field at the top and click to access the Credentials API.

4. Click “Create credentials”, then “OAuth client ID”. Choose “Application type” > “Web application”.

5. Enter a name for your JupyterHub instance. You can give it a descriptive name or set it to be the hub’s hostname.

6. Set “Authorized JavaScript origins” to be your hub’s URL.

7. Set “Authorized redirect URIs” to be your hub’s URL followed by “/hub/oauth_callback”. For example,
http://{example.com}/hub/oauth_callback.

8. When you click “Create”, the console will generate and display a Client ID and Client Secret. Save these values.

9. Type “consent screen” in the search field at the top and click to access the OAuth consent screen. Here you will
customize what your users see when they login to your JupyterHub instance for the first time. Click Save when
you are done.

10. In your helm chart, create a stanza that contains these OAuth fields:

auth:
type: google
google:
clientId: "yourlongclientidstring.apps.googleusercontent.com"
clientSecret: "adifferentlongstring"
callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
hostedDomain: "youruniversity.edu"
loginService: "Your University"

The callbackUrl key is set to the authorized redirect URI you specified earlier. Set hostedDomain to your
institution’s domain name. The value of loginService is a descriptive term for your institution that reminds your
users which account they are using to login.

4.3.3 Adding a Whitelist

JupyterHub can be configured to only allow a specified whitelist of users to login. This is especially useful if you are
using an authenticator with an authentication service open to the general public, such as GitHub or Google.

You can specify this list of usernames in your config.yaml:

auth:
whitelist:
users:

- user1
- user2

4.4 Speed and Optimization

This page contains information and guidelines for improving the speed, stability, and general optimization of your
JupyterHub deployment.

38 Chapter 4. Administrator Guide

http://jupyterhub.readthedocs.io/en/latest/getting-started/authenticators-users-basics.html#create-a-whitelist-of-users

Zero to JupyterHub, Release 0.4

4.4.1 Picking a Scheduler Strategy

Kubernetes offers very flexible ways to determine how it distributes pods on your nodes. The JupyterHub helm chart
supports two common configurations, see below for a brief description of each.

Spread

• Behavior: This spreads user pods across as many nodes as possible.

• Benefits: A single node going down will not affect too many users. If you do not have explicit memory & cpu
limits, this strategy also allows your users the most efficient use of RAM & CPU.

• Drawbacks: This strategy is less efficient when used with autoscaling.

This is the default strategy. To explicitly specify it, use the following in your config.yaml:

singleuser:
schedulerStrategy: spread

Pack

• Behavior: This packs user pods into as few nodes as possible.

• Benefits: This reduces your resource utilization, which is useful in conjunction with autoscalers.

• Drawbacks: A single node going down might affect more user pods than using a “spread” strategy (depending
on the node).

When you use this strategy, you should specify limits and guarantees for memory and cpu. This will make your users’
experience more predictable.

To explicitly specify this strategy, use the following in your config.yaml:

singleuser:
schedulerStrategy: pack

4.4.2 Pre-pulling

Pulling a user’s images to a node forces a user to wait before the user’s server is started. Sometimes, the wait can be
5 to 10 minutes. Pre-pulling the images on all the nodes can cut this wait time to a few seconds. Let’s look at how
pre-pulling works.

Hook - image pulling before upgrades

With the pre-pulling hook, which is enabled by default, the user’s container image is pulled on all nodes whenever
a helm install or helm upgrade is performed. While this causes helm install and helm upgrade to
take several minutes as the update is scheduled after the pulling has completed, the users waiting time will decrease
and become more reliable.

With the default helm upgrade settings, a helm install or helm upgradewill allow 5 minutes of image pulling
before timing out. This wait time is configurable by passing the --wait <seconds> flag to the helm commands.

We recommend using pre-pulling. For the rare cases where you have a good reason to disable it, pre-pulling can
be disabled. To disable the pre-pulling during helm install and helm upgrade, you can use the following
snippet in your config.yaml:

4.4. Speed and Optimization 39

Zero to JupyterHub, Release 0.4

prePuller:
hook:
enabled: false

Continuous - image pulling for added nodes

Cluster size can change through manual addition of nodes or autoscaling. When a new node is added to the cluster,
the new node does not yet have the user image. A user using this new node would be forced to wait while the image
is pulled from scratch. Ideally, it would be helpful to pre-pull images when the new node is added to the cluster.

With the continuous pre-puller enabled (disabled by default), the user’s container image will be pre-pulled when
a new node is added. New nodes can for example be added manually or by a cluster autoscaler. The continuous
pre-puller uses a daemonset to force kubernetes to pull the user image on all nodes as soon as a node is present. The
continuous pre-puller uses minimal resources on all nodes and greatly speeds up the user pod start time.

The continuous pre-puller is disabled by default. To enable it, use the following snippet in your config.yaml:

prePuller:
continuous:
enabled: true

Pre-pulling additional images

By default, the pre-puller only pulls the singleuser image & the networktools image (if access to cloud metadata is
disabled). If you have customizations that need additional images present on all nodes, you can ask the pre-puller to
also pull an arbitrary number of additional images.

prePuller:
extraImages:
ubuntu-xenial:

name: ubuntu
tag: 16.04

This snippet will pre-pull the ubuntu:16.04 image on all nodes, for example. You can pre-pull any number of
images.

4.5 Security

The information in this document focuses primarily on cloud based deployments. For on-premise deployments, ad-
ditional security work that is specific to your installation method would also be required. Note that your specific
installation’s security needs might be more or less stringent than what we can offer you here.

Brad Geesamen gave a wonderful talk titled Hacking and Hardening Kubernetes by Example at Kubecon NA 2017.
You can watch the talk or read the slides. Highly recommended that you do so to understand the security issues you
are up against when using Kubernetes to run JupyterHub.

4.5.1 HTTPS

This section describes how to enable HTTPS on your JupyterHub. The easiest way to do so is by using Let’s Encrypt,
though we’ll also cover how to set up your own HTTPS credentials. For more information on HTTPS security see the
certificates section of this blog post.

40 Chapter 4. Administrator Guide

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kccncna17.sched.com/event/CU6z/hacking-and-hardening-kubernetes-clusters-by-example-i-brad-geesaman-symantec
https://www.youtube.com/watch?v=vTgQLzeBfRU
https://schd.ws/hosted_files/kccncna17/47/Hacking%20and%20Hardening%20Kubernetes%20By%20Example%20v1.pdf
https://letsencrypt.org/
https://blog.hartleybrody.com/https-certificates/

Zero to JupyterHub, Release 0.4

Set up your domain

1. Buy a domain name from a registrar. Pick whichever one you want.

2. Create an A record from the domain you want to use, pointing to the EXTERNAL-IP of the proxy-public service.
The exact way to do this will depend on the DNS provider that you’re using.

3. Wait for the change to propagate. Propagation can take several minutes to several hours. Wait until you can type
in the name of the domain you bought and it shows you the JupyterHub landing page.

It is important that you wait - prematurely going to the next step might cause problems!

Set up automatic HTTPS

1. Specify the two bits of information that we need to automatically provision HTTPS certificates - your domain
name & a contact email address.

proxy:
https:

hosts:
- <your-domain-name>

letsencrypt:
contactEmail: <your-email-address>

2. Apply the config changes by running helm upgrade

3. Wait for about a minute, now your hub should be HTTPS enabled!

Set up manual HTTPS

If you have your own HTTPS certificates & want to use those instead of the automatically provisioned Let’s Encrypt
ones, that’s also possible. Note that this is considered an advanced option, so we recommend not doing it unless you
have good reasons.

1. Add your domain name & HTTPS certificate info to your config.yaml

proxy:
https:

hosts:
- <your-domain-name>

type: manual
manual:

key: |
-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----

cert: |
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

2. Apply the config changes by running helm upgrade

3. Wait for about a minute, now your hub should be HTTPS enabled!

4.5. Security 41

Zero to JupyterHub, Release 0.4

4.5.2 Secure access to Helm

In its default configuration, helm pretty much allows root access to all other pods running in your cluster. See this
Bitnami Helm security article for more information. As a consequence, the default allows all users in your cluster to
pretty much have root access to your whole cluster!

You can mitigate this by limiting public access to the Tiller API. To do so, use the following command:

kubectl --namespace=kube-system patch deployment tiller-deploy --type=json --patch='[{
→˓"op": "add", "path": "/spec/template/spec/containers/0/command", "value": ["/tiller
→˓", "--listen=localhost:44134"]}]'

This limit shouldn’t affect helm functionality in any form.

4.5.3 Audit Cloud Metadata server access

Most cloud providers have a static IP you can hit from any of the compute nodes, including the user pod, to get
metadata about the cloud. This metadata can contain very sensitive info, and this metadata, in the wrong hands, can
allow attackers to take full control of your cluster and cloud resources. It is critical to secure the metadata service. We
block access to this IP by default (as of v0.6), so you are protected from this!

The slides beginning at Slide 38 provides more information on the dangers presented by this attack.

If you need to enable access to the metadata server for some reason, you can do the following in config.yaml:

singleuser:
cloudMetadata:
enabled: true

4.5.4 Delete the Kubernetes Dashboard

The Kubernetes Dashboard gets created by default in many installations. Although the Dashboard contains useful
information, the Dashboard also poses a security risk. We recommend deleting it and not using it for the time being
until the Dashboard becomes properly securable.

You can mitigate this by deleting the Kubernetes Dashboard deployment from your cluster. This can be most likely
performed with:

kubectl --namespace=kube-system delete deployment kubernetes-dashboard

In older clusters, you might have to do:

kubectl --namespace=kube-system delete rc kubernetes-dashboard

4.5.5 Use Role Based Access Control (RBAC)

Kubernetes supports, and often requires, using Role Based Access Control (RBAC) to secure which pods / users can
perform what kinds of actions on the cluster. RBAC rules can be set to provide users with minimal necessary access
based on their administrative needs.

It is critical to understand that if RBAC is disabled, all pods are given root equivalent permission on the Kubernetes
cluster and all the nodes in it. This opens up very bad vulnerabilites for your security.

42 Chapter 4. Administrator Guide

https://engineering.bitnami.com/articles/helm-security.html
https://schd.ws/hosted_files/kccncna17/d8/Hacking%20and%20Hardening%20Kubernetes%20By%20Example%20v2.pdf
https://github.com/kubernetes/dashboard
https://kubernetes.io/docs/admin/authorization/rbac/

Zero to JupyterHub, Release 0.4

As of the Helm chart v0.5 used with JupyterHub and BinderHub, the helm chart can natively work with RBAC enabled
clusters. To provide sensible security defaults, we ship appropriate minimal RBAC rules for the various components
we use. We highly recommend using these minimal or more restrictive RBAC rules.

If you want to disable the RBAC rules, for whatever reason, you can do so with the following snippet in your config.
yaml:

rbac:
enabled: false

We strongly discourage disabling the RBAC rules and remind you that this action will open up security vulnerabilities.
However, some cloud providers (particularly Azure AKS) do not support RBAC right now, and you might have to
disable RBAC with this config to run on Azure.

4.5.6 Kubernetes API Access

Allowing direct user access to the Kubernetes API can be dangerous. It allows users to grant themselves more priv-
ileges, access other users’ content without permission, run (unprofitable) bitcoin mining operations & various other
not-legitimate activities. By default, we do not allow access to the service account credentials needed to access the
kubernetes API from user servers for this reason.

If you want to (carefully!) give access to the Kubernetes API to your users, you can do so with the following in your
config.yaml:

singleuser:
serviceAccountName: <service-account-name>

You can either manually create a service account for use by your users and specify the name of that here (recom-
mended) or use default to give them access to the default service account for the namespace. You should ideally
also (manually) set up RBAC rules for this service account to specify what permissions users will have.

This is a sensitive security issue (similar to writing sudo rules in a traditional computing environment), so be very
careful.

There’s ongoing work on making this easier!

4.5.7 Kubernetes Network Policies

Kubernetes has optional support for network policies which lets you restrict how pods can communicate with each
other and the outside world. This can provide additional security within JupyterHub, and can also be used to limit
network access for users of JupyterHub.

By default, the JupyterHub helm chart disables network policies.

Enabling network policies

Important: If you decide to enable network policies, you should be aware that a Kubernetes cluster may have partial,
full, or no support for network policies. Kubernetes will silently ignore policies that aren’t supported. Please use
caution if enabling network policies and verify the policies behave as expected, especially if you rely on them to
restrict what users can access.

You can enable network policies in your config.yaml:

4.5. Security 43

https://github.com/Azure/AKS/issues/67
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Zero to JupyterHub, Release 0.4

hub:
networkPolicy:
enabled: true

proxy:
networkPolicy:
enabled: true

singleuser:
networkPolicy:
enabled: true

The default singleuser policy allows all outbound network traffic, meaning JupyterHub users are able to connect to all
resources inside and outside your network. To restrict outbound traffic to DNS, HTTP and HTTPS:

singleuser:
networkPolicy:
enabled: true
egress:
- ports:

- port: 53
protocol: UDP

- ports:
- port: 80

protocol: TCP
- ports:

- port: 433
protocol: TCP

See the Kubernetes documentation for further information on defining policies.

4.6 Upgrading your JupyterHub Kubernetes deployment

This page covers best-practices in upgrading your JupyterHub deployment via updates to the Helm Chart.

Upgrading from one version of the Helm Chart to the next should be as seamless as possible, and generally shouldn’t
require major changes to your deployment. Check the CHANGELOG for each release to find out if there are any
breaking changes in the newest version.

For additional help, feel free to reach out to us on gitter or the mailing list!

4.6.1 Major helm-chart upgrades

These steps are critical before performing a major upgrade.

1. Always backup your database!

2. Review the CHANGELOG for incompatible changes and upgrade instructions.

3. Update your configuration accordingly.

4. User servers may need be stopped prior to the upgrade, or restarted after it.

5. If you are planning an upgrade of a critical major installation, we recommend you test the upgrade out on a
staging cluster first before applying it to production.

44 Chapter 4. Administrator Guide

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md
http://gitter.im/jupyterhub/jupyterhub
https://groups.google.com/forum/#!forum/jupyter
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md

Zero to JupyterHub, Release 0.4

v0.5 to v0.6

See the CHANGELOG.

v0.4 to v0.5

Release 0.5 contains a major JupyterHub version bump (from 0.7.2 to 0.8). Since it is a major upgrade of JupyterHub
that changes how authentication is implemented, user servers must be stopped during the upgrade. The database
schema has also changed, so a database upgrade must be performed.

See the documentation for v0.5 for the upgrade process as well as the CHANGELOG for this release for more infor-
mation about changes.

4.6.2 Subtopics

This section covers upgrade information specific to the following:

• helm upgrade command

• Databases

• RBAC (Role Based Access Control)

• Custom Docker images

helm upgrade command

After modifying your config.yaml file according to the CHANGELOG, you will need
<YOUR-HELM-RELEASE-NAME> to run the upgrade commands. To find <YOUR-RELEASE-NAME>, run:

helm list

Make sure to test the upgrade on a staging environment before doing the upgrade on a production system!

To run the upgrade:

helm upgrade <YOUR-HELM-RELEASE-NAME> jupyterhub/jupyterhub --version=<RELEASE-
→˓VERSION> -f config.yaml

For example, to upgrade to v0.6, enter and substituting <YOUR-HELM-RELEASE-NAME> and version v0.6:

helm upgrade <YOUR-HELM-RELEASE-NAME> jupyterhub/jupyterhub --version=v0.6 -f config.
→˓yaml

Database

This release contains a major JupyterHub version bump (from 0.7.2 to 0.8). If you are using the default database
provider (SQLite), then the required db upgrades will be performed automatically when you do a helm upgrade.

Default (SQLite): The database upgrade will be performed automatically when you perform the upgrade

MySQL / PostgreSQL: You will execute the following steps, which includes a manual update of your database:

1. Make a full backup of your database, just in case things go bad.

2. Make sure that the database user used by JupyterHub to connect to your database can perform schema migrations
like adding new tables, altering tables, etc.

4.6. Upgrading your JupyterHub Kubernetes deployment 45

https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md#06---ellyse-perry---2017-01-29
https://zero-to-jupyterhub.readthedocs.io/en/v0.5-doc/upgrading.html
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md#05---hamid-hassan---2017-12-05

Zero to JupyterHub, Release 0.4

3. In your config.yaml, add the following config:

hub:
db:

upgrade: true

4. Do a helm upgrade. This should perform the database upgrade needed.

5. Remove the lines added in step 3, and do another helm upgrade.

Role based access control

RBAC is the user security model in Kubernetes that gives applications only as much access they need to the kubernetes
API and not more. Prior to this, applications were all running with the equivalent of root on your Kubernetes cluster.
This release adds appropriate roles for the various components of JupyterHub, for much better ability to secure clusters.

RBAC is turned on by default. But, if your cluster is older than 1.8, or you have RBAC enforcement turned off, you
might want to explicitly disable it. You can do so by adding the following snippet to your config.yaml:

rbac:
enabled: false

This is especially true if you get an error like:

Error: the server rejected our request for an unknown reason (get clusterrolebindings.
→˓rbac.authorization.k8s.io)

when doing the upgrade!

Custom Docker Images: JupyterHub version match

If you are using a custom built image, make sure that the version of the JupyterHub package installed in it is now 0.8.1.
It needs to be 0.8.1 for it to work with v0.6 of the helm chart.

For example, if you are using pip to install JupyterHub in your custom Docker Image, you would use:

RUN pip install --no-cache-dir jupyterhub==0.8.1

4.6.3 Troubleshooting

If the upgrade is failing on a test system or a system that does not serve users, you can try deleting the helm chart
using:

helm delete <YOUR-HELM-RELEASE-NAME> --purge

helm list may be used to find <YOUR-HELM-RELEASE-NAME>.

4.7 FAQ

This section contains frequently asked questions about the JupyterHub deployment. For information on debugging
Kubernetes, see Debugging Kubernetes.

46 Chapter 4. Administrator Guide

https://kubernetes.io/docs/admin/authorization/rbac/

Zero to JupyterHub, Release 0.4

4.7.1 I thought I had deleted my cloud resources, but they still show up. Why?

You probably deleted the specific nodes, but not the kubernetes cluster that was controlling those nodes. Kubernetes
is designed to make sure that a specific set of resources is available at all times. This means that if you only delete
the nodes, but not the kubernetes instance, then it will detect the loss of computers and will create two new nodes to
compensate.

4.7.2 How does billing for this work?

JupyterHub isn’t handling any of the billing for your usage. That’s done through whatever cloud service you’re using.
For considerations about managing cost with JupyterHub, see Appendix: Projecting deployment costs.

4.8 Advanced Topics

This page contains a grab bag of various useful topics that don’t have an easy home elsewhere:

• Ingress

• Arbitrary extra code and configuration in jupyterhub_config.py

Most people setting up JupyterHubs on popular public clouds should not have to use any of this information, but these
topics are essential for more complex installations.

4.8.1 Ingress

If you are using a Kubernetes Cluster that does not provide public IPs for services directly, you need to use an ingress
to get traffic into your JupyterHub. This varies wildly based on how your cluster was set up, which is why this is in
the ‘Advanced’ section.

You can enable the required ingress object with the following in your config.yaml

ingress:
enabled: true
hosts:
- <hostname>

You can specify multiple hosts that should be routed to the hub by listing them under ingress.hosts.

Note that you need to install and configure an Ingress Controller for the ingress object to work.

We recommend the community-maintained nginx ingress controller, kubernetes/ingress-nginx. Note that Ng-
inx maintains two additional ingress controllers. For most use cases, we recommend the community maintained
kubernetes/ingress-nginx since that is the ingress controller that the development team has the most experience us-
ing.

Ingress and Automatic HTTPS with kube-lego & Let’s Encrypt

When using an ingress object, the default automatic HTTPS support does not work. To have automatic fetch and
renewal of HTTPS certificates, you must set it up yourself.

Here’s a method that uses kube-lego to automatically fetch and renew HTTPS certificates from Let’s Encrypt. This ap-
proach with kube-lego and Let’s Encrypt currently only works with two ingress controllers: the community-maintained
kubernetes/ingress-nginx and google cloud’s ingress controller.

4.8. Advanced Topics 47

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers
https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress
https://github.com/kubernetes/ingress-nginx
https://github.com/jetstack/kube-lego
https://letsencrypt.org/
https://github.com/kubernetes/ingress-nginx

Zero to JupyterHub, Release 0.4

1. Make sure that DNS is properly set up (configuration depends on the ingress controller you are using and how
your cluster was set up). Accessing <hostname> from a browser should route traffic to the hub.

2. Install & configure kube-lego using the kube-lego helm-chart. Remember to change config.LEGO_EMAIL
and config.LEGO_URL at the least.

3. Add an annotation + TLS config to the ingress so kube-lego knows to get certificates for it:

ingress:
annotations:

kubernetes.io/tls-acme: "true"
tls:
- hosts:

- <hostname>
secretName: kubelego-tls-jupyterhub

This should provision a certificate, and keep renewing it whenever it gets close to expiry!

4.8.2 Arbitrary extra code and configuration in jupyterhub_config.py

Sometimes the various options exposed via the helm-chart’s values.yaml is not enough, and you need to insert
arbitrary extra code / config into jupyterhub_config.py. This is a valuable escape hatch for both prototyping
new features that are not yet present in the helm-chart, and also for installation-specific customization that is not suited
for upstreaming.

There are four properties you can set in your config.yaml to do this.

hub.extraConfig

The value specified for hub.extraConfig is evaluated as python code at the end of jupyterhub_config.py.
You can do anything here since it is arbitrary Python Code. Some examples of things you can do:

1. Override various methods in the Spawner / Authenticator by subclassing them. For example, you can use this
to pass authentication credentials for the user (such as GitHub OAuth tokens) to the environment. See the
JupyterHub docs for an example.

2. Specify traitlets that take callables as values, allowing dynamic per-user configuration.

3. Set traitlets for JupyterHub / Spawner / Authenticator that are not currently supported in the helm chart

Unfortunately, you have to write your python in your YAML file. There’s no way to include a file in config.yaml.

You can specify hub.extraConfig as a raw string (remember to use the | for multi-line YAML strings):

hub:
extraConfig: |
import time
c.Spawner.environment += {

"CURRENT_TIME": str(time.time())
}

You can also specify hub.extraConfig as a dictionary, if you want to logically split your customizations. The
code will be evaluated in alphabetical sorted order of the key.

hub:
extraConfig:
00-first-config: |

some code

(continues on next page)

48 Chapter 4. Administrator Guide

https://github.com/kubernetes/charts/tree/master/stable/kube-lego
http://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html#authentication-state
http://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html#authentication-state

Zero to JupyterHub, Release 0.4

(continued from previous page)

10-second-config: |
some other code

hub.extraConfigMap

This property takes a dictionary of values that are then made available for code in hub.extraConfig to read using
a z2jh.get_config function. You can use this to easily separate your code (which goes in hub.extraConfig)
from your config (which should go here).

For example, if you use the following snippet in your config.yaml file:

hub:
extraConfigMap:
myString: Hello!
myList:

- Item1
- Item2

myDict:
key: value

myLongString: |
Line1
Line2

In your hub.extraConfig,

1. z2jh.get_config('custom.myString') will return a string "Hello!"

2. z2jh.get_config('custom.myList') will return a list ["Item1", "Item2"]

3. z2jh.get_config('custom.myDict') will return a dict {"key": "value"}

4. z2jh.get_config('custom.myLongString') will return a string "Line1\nLine2"

5. z2jh.get_config('custom.nonExistent') will return None (since you didn’t specify any value
for nonExistent)

6. z2jh.get_config('custom.myDefault', True) will return True, since that is specified as the
second parameter (default)

You need to have a import z2jh at the top of your extraConfig for z2jh.get_config() to work.

Note that the keys in hub.extraConfigMap must be alpha numeric strings starting with a character. Dashes and
Underscores are not allowed.

hub.extraEnv

This property takes a dictionary that is set as environment variables in the hub container. You can use this to either
pass in additional config to code in your hub.extraConfig or set some hub parameters that are not settable by
other means.

hub.extraContainers

A list of extra containers that are bundled alongside the hub container in the same pod. This is a common pattern in
kubernetes that as a long list of cool use cases. Some example use cases are:

4.8. Advanced Topics 49

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

Zero to JupyterHub, Release 0.4

1. Database Proxies, which are sometimes required for the hub to talk to its configured database (in Google Cloud)
for example

2. Servers / other daemons that are used by code in your hub.customConfig

The items in this list must be valid kubernetes container specifications.

4.8.3 Picking a Scheduler Strategy

Kubernetes offers very flexible ways to determine how it distributes pods on your nodes. The JupyterHub helm chart
supports two common configurations, see below for a brief description of each.

Spread

• Behavior: This spreads user pods across as many nodes as possible.

• Benefits: A single node going down will not affect too many users. If you do not have explicit memory & cpu
limits, this strategy also allows your users the most efficient use of RAM & CPU.

• Drawbacks: This strategy is less efficient when used with autoscaling.

This is the default strategy. To explicitly specify it, use the following in your config.yaml:

singleuser:
schedulerStrategy: spread

Pack

• Behavior: This packs user pods into as few nodes as possible.

• Benefits: This reduces your resource utilization, which is useful in conjunction with autoscalers.

• Drawbacks: A single node going down might affect more user pods than using a “spread” strategy (depending
on the node).

When you use this strategy, you should specify limits and guarantees for memory and cpu. This will make your users’
experience more predictable.

To explicitly specify this strategy, use the following in your config.yaml:

singleuser:
schedulerStrategy: pack

4.8.4 Pre-pulling Images for Faster Startup

Pulling and building a user’s images forces a user to wait before the user’s server is started. Sometimes, the wait can
be 5 to 10 minutes. Pre-pulling the images on all the nodes can cut this wait time to a few seconds. Let’s look at how
pre-pulling works.

Pre-pulling basics

With pre-pulling, which is enabled by default, the user’s container image is pulled on all nodes whenever a helm
install or helm upgrade is performed. While this causes helm install and helm upgrade to take
several minutes, this time makes the user startup experience faster and more pleasant.

50 Chapter 4. Administrator Guide

https://cloud.google.com/sql/docs/mysql/sql-proxy
https://v1-8.docs.kubernetes.io/docs/api-reference/v1.8/#container-v1-core

Zero to JupyterHub, Release 0.4

With the default pre-pulling setting, a helm install or helm upgrade will cause the system to wait for
5 minutes to begin pulling the images before timing out. This wait time is configurable by passing the --wait
<seconds> flag to the helm commands.

We recommend using pre-pulling. For the rare cases where you have a good reason to disable it, pre-pulling can
be disabled. To disable the pre-pulling during helm install and helm upgrade, you can use the following
snippet in your config.yaml:

prePuller:
hook:

enabled: false

Pre-pulling and changes in cluster size

Cluster size can change through manual addition of nodes or autoscaling. When a new node is added to the cluster,
the new node does not yet have the user image. A user using this new node would be forced to wait while the image
is pulled from scratch. Ideally, it would be helpful to pre-pull images when the new node is added to the cluster.

By enabling the continuous pre-puller (default state is disabled), the user image will be pre-pulled when adding a
new node. When enabled, the continuous pre-puller runs as a daemonset to force kubernetes to pull the user image
on all nodes as soon as a node is present. The continuous pre-puller uses minimal resources on all nodes and greatly
speeds up the user pod start time.

The continuous pre-puller is disabled by default. To enable it, use the following snippet in your config.yaml:

prePuller:
continuous:
enabled: true

Pre-pulling additional images

By default, the pre-puller only pulls the singleuser image & the networktools image (if access to cloud metadata is
disabled). If you have customizations that need additional images present on all nodes, you can ask the pre-puller to
also pull an arbitrary number of additional images.

prePuller:
extraImages:

ubuntu-xenial:
name: ubuntu
tag: 16.04

This snippet will pre-pull the ubuntu:16.04 image on all nodes, for example. You can pre-pull any number of
images.

4.9 Appendix: Projecting deployment costs

Important: Clarification on cost projections

As a non-profit research project, Project Jupyter does not offer, recommend, or sell cloud deployment services for
JupyterHub.

4.9. Appendix: Projecting deployment costs 51

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Zero to JupyterHub, Release 0.4

The information in this section is offered as guidance as requested by our users. We caution that costs can vary widely
based on providers selected and your use cases.

4.9.1 Factors influencing costs

Cost estimates depend highly on your deployment setup. Several factors that significantly influence cost estimates,
include:

• Computational resources provided to users

• Number of users

• Usage patterns of users

Computational Resources

Memory (RAM) makes up the largest part of a cost estimate. More RAM means that your users will be able to work
with larger datasets with more flexibility, but it can also be expensive.

Persistent storage for users, if needed, is another element that will impact the cost estimate. If users don’t have
persistent storage, then disks will be wiped after users finish their sessions. None of their changes will be saved. This
requires significantly fewer storage resources, and also results in faster load times.

For an indicator of how costs scale with computational resources, see the Google Cloud pricing page.

Users

The number of users has a direct relationship to cost estimates. Since a deployment may support different types of
users (i.e. researchers, students, instructors) with varying hardware and storage needs, take into account both the type
of users and the number per type.

User usage patterns

Another important factor is what usage pattern your users will have. Will they all use the JupyterHub at once, such as
during a large class workshop? will users use JupyterHub at different times of day?

The usage patterns and peak load on the system have important implications for the resources you need to provide.
In the future JupyterHub will have auto-scaling functionality, but currently it does not. This means that you need to
provision resources for the maximum expected number of users at one time.

4.9.2 Interactive Cost Estimator

This small notebook may help you to make an initial planning estimate of costs for your JupyterHub instance.

To use the estimator, the button below will take you to an interactive notebook served with Binder. Run the cells and
you’ll be able to choose the computational requirements you have, as well as draw a pattern of usage you expect over
time. It will estimate the costs for you.

Warning: The cost estimator is a very rough estimate. It is based on Google Cloud Engine instances served
from Oregon. Costs will vary based on your location / provider, and will be highly variable if you implement any
kind of auto-scaling. Treat it as an order-of-magnitude estimate, not a hard rule.

52 Chapter 4. Administrator Guide

https://cloud.google.com/compute/pricing
https://mybinder.org

Zero to JupyterHub, Release 0.4

4.9.3 Examples

Here are a few examples that describe different use cases and the amount of resources used by a particular JupyterHub
implementation. There are many factors that go into these estimates, and you should expect that your actual costs may
vary significantly under other conditions.

Data 8

The Data 8 course at UC Berkeley used a JupyterHub to coordinate all course material and to provide a platform where
students would run their code. This consisted of many hundreds of students, who had minimal requirements in terms
of CPU and memory usage. Ryan Lovett put together a short Jupyter notebook estimating the cost for computational
resources depending on the student needs.

4.9. Appendix: Projecting deployment costs 53

https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb
https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb

Zero to JupyterHub, Release 0.4

54 Chapter 4. Administrator Guide

CHAPTER 5

Resources from the community

This section gives the community a space to provide information on setting up, managing, and maintaining JupyterHub.

Important: We recognize that Kubernetes has many deployment options. As a project team with limited resources
to provide end user support, we rely on community members to share their collective Kubernetes knowledge and
JupyterHub experiences.

We hope that you will use this section to share deployments with on a variety of infrastructure and for different use
cases. There is also a community maintained list of users of this Guide and the JupyterHub Helm Chart.

Please submit a pull request to add to this section. Thanks.

5.1 Community-authored documentation

This page contains links and references to other material in the JupyterHub ecosystem. It may include other guides,
examples of JupyterHub deployments, or posts from the community.

If you have a suggestion for something to add to this page, please open an issue.

5.1.1 Links to blog posts

5.1.2 Links to community project repos

5.2 Zero to JupyterHub Gallery of Deployments

This is a community maintained list of organizations / people using the Zero to JupyterHub guide / helm-chart to
maintain their JupyterHub. Send us a Pull Request to add yourself to this alphabetically sorted list!

• Data Science Education Program’s DataHub at University of California, Berkeley

55

users-list.html
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues

Zero to JupyterHub, Release 0.4

• MyBinder.org

• PAWS at Wikimedia Cloud Services

56 Chapter 5. Resources from the community

https://mybinder.org
https://www.mediawiki.org/wiki/PAWS
https://www.mediawiki.org/wiki/Wikimedia_Cloud_Services_team

CHAPTER 6

Reference

6.1 Helm Chart Configuration Reference

The JupyterHub helm chart is configurable so that you can customize your JupyterHub setup however you’d like. You
can extend user resources, build off of different Docker images, manage security and authentication, and more.

Below is a description of the fields that are exposed with the JupyterHub helm chart. For more guided information
about some specific things you can do with modifications to the helm chart, see the extending jupyterhub and user
environment pages.

6.1.1 hub

hub.db

hub.db.url

Connection string when hub.db.type is mysql or postgres.

See documentation for hub.db.type for more details on the format of this property.

hub.db.type

Type of database backend to use for the hub database.

The Hub requires a persistent database to function, and this lets you specify where it should be stored.

The various options are:

1. sqlite-pvc

Use an sqlite database kept on a persistent volume attached to the hub.

57

https://github.com/jupyterhub/zero-to-jupyterhub-k8s
extending-jupyterhub.html
user-environment.html
user-environment.html

Zero to JupyterHub, Release 0.4

By default, this disk is dynamically created using the default [dynamic provisioner]. You can customize how
this disk is created / attached by setting various properties under hub.db.pvc.

This is the default setting, and should work well for most cloud provider deployments.

2. sqlite-memory

Use an in-memory sqlite database. This should only be used for testing, since the database is erased whenever
the hub pod restarts - causing the hub to lose all memory of users who had logged in before.

When using this for testing, make sure you delete all other objects that the hub has created (such as user pods,
user PVCs, etc) every time the hub restarts. Otherwise you might run into errors about duplicate resources.

3. mysql

Use an externaly hosted mysql database.

You have to specify an sqlalchemy connection string for the mysql database you want to connect to in hub.
db.url if using this option.

The general format of the connection string is:

mysql+pymysql://<db-username>:<db-password>@<db-hostname>:<db-port>/<db-name>

The user specified in the connection string must have the rights to create tables in the database specified.

Note that if you use this, you must also set hub.cookieSecret.

4. postgres

Use an externaly hosted postgres database.

You have to specify an sqlalchemy connection string for the postgres database you want to connect to in hub.
db.url if using this option.

The general format of the connection string is:

postgres+psycopg2://<db-username>:<db-password>@<db-hostname>:<db-port>/<db-name>

The user specified in the connection string must have the rights to create tables in the database specified.

Note that if you use this, you must also set hub.cookieSecret.

hub.db.pvc

hub.db.pvc.selector

Selectors to set for the PVC containing the sqlite database.

Useful when you are using a static PVC.

TODO: Link to pvc selector docs.

hub.db.pvc.annotations

Annotations to apply to the PVC containing the sqlite database.

TODO: Link to pvc annotations

58 Chapter 6. Reference

Zero to JupyterHub, Release 0.4

hub.db.pvc.storage

Size of disk to request for the database disk.

hub.uid

The UID the hub process should be running as. Use this only if you are building your own image & know that a user
with this uid exists inside the hub container! Advanced feature, handle with care! Defaults to 1000, which is the uid
of the jovyan user that is present in the default hub image.

hub.labels

Extra labels to add to the hub pod.

See the kubernetes documentation to learn more about labels.

hub.extraEnv

Extra environment variables that should be set for the hub pod.

A list of EnvVar objects.

These are usually used in two circumstances:

• Passing parameters to some custom code specified with extraConfig

• Passing parameters to an authenticator or spawner that can be directly customized by environment variables
(rarer)

hub.fsGid

The gid the hub process should be using when touching any volumes mounted. Use this only if you are building your
own image & know that a group with this gid exists inside the hub container! Advanced feature, handle with care!
Defaults to 1000, which is the gid of the jovyan user that is present in the default hub image.

hub.extraConfig

Arbitrary extra python based configuration that should be in jupyterhub_config.py.

This is the escape hatch - if you want to configure JupyterHub to do something specific that is not present here as an
option, you can just write the raw Python to do it here.

Non-exhaustive examples of things you can do here:

• Subclass authenticator / spawner to do a custom thing

• Dynamically launch different images for different sets of images

• Inject an auth token from GitHub authenticator into user pod

• Anything else you can think of!

Since this is usually a multi-line string, you want to format it using YAML’s | operator.

For example:

6.1. Helm Chart Configuration Reference 59

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.9/#envvar-v1-core
http://www.yaml.org/spec/1.2/spec.html#id2795688

Zero to JupyterHub, Release 0.4

hub:
extraConfig: |
c.JupyterHub.something = 'something'
c.Spawner.somethingelse = 'something else'

No validation of this python is performed! If you make a mistake here, it will probably manifest as either the hub pod
going into Error or CrashLoopBackoff states, or in some special cases, the hub running but. . . just doing very
random things. Be careful!

hub.imagePullPolicy

Set the imagePullPolicy on the hub pod.

See the kubernetes docs for more info on what the values mean.

hub.cookieSecret

A 64-byte cryptographically secure randomly generated string used to sign values of secure cookies set by the
hub. If unset, jupyterhub will generate one on startup and save it in the file jupyterhub_cookie_secret
in the /srv/jupyterhub directory of the hub container. Value set here will override the value in
jupyterhub_cookie_secret.

You do not need to set this at all if you are using the default configuration for storing databases - sqlite on a persistent
volume (with hub.db.type set to the default sqlite-pvc). If you are using an external database, then you must
set this value explicitly - or your users will keep getting logged out each time the hub pod restarts.

This must be generated with openssl rand -hex 32.

Changing this value will all user logins to be invalidated. If this secret leaks, immediately change it to something else,
or user data can be compromised

hub.image

Set custom image name / tag for the hub pod.

Use this to customize which hub image is used. Note that you must use a version of the hub image that was bundled
with this particular version of the helm-chart - using other images might not work.

hub.image.tag

The tag of the image to pull.

This is the value after the : in your full image name.

hub.image.name

Name of the image, without the tag.

Examples:

• yuvipanda/wikimedia-hub

• gcr.io/my-project/my-hub

60 Chapter 6. Reference

https://kubernetes.io/docs/concepts/containers/images/#updating-images

Zero to JupyterHub, Release 0.4

6.1.2 auth

auth.state

auth.state.cryptoKey

auth_state will be encrypted and stored in the Hub’s database. This can include things like authentication tokens,
etc. to be passed to Spawners as environment variables. Encrypting auth_state requires the cryptography package. It
must contain one (or more, separated by ;) 32B encryption keys. These can be either base64 or hex-encoded. The
JUPYTERHUB_CRYPTO_KEY envirionment variable will be used to set this key.

This can be generated with openssl rand -hex 32.

If encryption is unavailable, auth_state cannot be persisted.

auth.state.enabled

Enable persisting auth_state (if available). See: http://jupyterhub.readthedocs.io/en/latest/api/auth.html

6.1.3 singleuser

Options for customizing the environment that is provided to the users after they log in.

singleuser.cpu

Set CPU limits & guarantees that are enforced for each user. See:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

singleuser.cpu.limit

singleuser.cpu.guarantee

singleuser.memory

Set Memory limits & guarantees that are enforced for each user. See:
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

singleuser.memory.limit

singleuser.memory.guarantee

singleuser.image

Set custom image name / tag used for spawned users.

This image is used to launch the pod for each user.

6.1. Helm Chart Configuration Reference 61

Zero to JupyterHub, Release 0.4

singleuser.image.tag

The tag of the image to use.

This is the value after the : in your full image name.

singleuser.image.name

Name of the image, without the tag.

Examples:

• yuvipanda/wikimedia-hub-user

• gcr.io/my-project/my-user-image

6.1.4 proxy

proxy.secretToken

A 64-byte cryptographically secure randomly generated string used to secure communications between the hub and
the configurable-http-proxy.

This must be generated with openssl rand -hex 32.

Changing this value will cause the proxy and hub pods to restart. It is good security practice to rotate these values over
time. If this secret leaks, immediately change it to something else, or user data can be compromised

6.2 Official JupyterHub and Project Jupyter Documentation

• The JupyterHub Documentation provides information about JupyterHub itself (not the Kubernetes deployment).

• Binder allows users to create sharable computational environments on-the-fly. It makes heavy use of JupyterHub.

• The 2016 JupyterHub Workshop was an informal gathering to share experience in deploying JupyterHub for
various use-cases, including teaching and high-performance computing.

6.3 Tools used in a JupyterHub Deployment

JupyterHub is meant to connect with many tools in the world of cloud computing and container technology. This page
describes these tools in greater detail in order to provide some more contextual information.

6.3.1 Cloud Computing Providers

This is whatever will run the actual computation. Generally it means a company, university server, or some other orga-
nization that hosts computational resources that can be accessed remotely. JupyterHub will run on these computational
resources, meaning that users will also be operating on these resources if they’re interacting with your JupyterHub.

They provide the following things:

• Computing

• Disk space

62 Chapter 6. Reference

https://jupyterhub.readthedocs.io/en/latest/
https://mybinder.org
https://github.com/jupyter-resources/jupyterhub-2016-workshop

Zero to JupyterHub, Release 0.4

• Networking (both internal and external)

• Creating, resizing, and deleting clusters

Some of these organizations are companies (e.g., Google), though JupyterHub will work fine with university clusters
or custom cluster deployments as well. For these materials, any cluster with Kubernetes installed will work with
JupyterHub.

More information about setting up accounts services with cloud providers can be found here.

6.3.2 Container Technology

Container technology is essentially the idea of bundling all of the necessary components to run a piece of software.
There are many ways to do this, but one that we’ll focus on is called Docker. Here are the main concepts of Docker:

Container Image

Container images contain the dependencies required to run your code. This includes everything, all the way down to
the operating system itself. It also includes things like the filesystem on which your code runs, which might include
data etc. Containers are also portable, meaning that you can exactly recreate the computational environment to run
your code on almost any machine.

In Docker, images are described as layers, as in layers of dependencies. For example, say you want to build a container
that runs scikit-learn. This has a dependency on Python, so you have two layers: one for python, and another that
inherits the python layer and adds the extra piece of scikit-learn. Moreover, that base python layer needs an operating
system to run on, so now you have three layers: ubuntu -> python -> scikit-learn. You get the idea. The beauty of this
is that it means you can share base layers between images. This means that if you have many different images that all
require ubuntu, you don’t need to have many copies of ubuntu lying around.

Images can be created from many things. If you’re using Docker, the basic way to do this is with a Dockerfile. This is
essentially a list of instructions that tells Docker how to create an image. It might tell Docker which base layers you
want to include in an image, as well as some extra dependencies that you need in the image. Think of it like a recipe
that tells Docker how to create an image.

Containers

You can “run” a container image, and it creates a container for you. A container is a particular instantiation of a
container image. This means that it actually exists on a computer. It is a self-contained computational environment
that is constructed according to the layers that are inside of the Container Image. However, because it is now running
on the computer, it can do other useful things like talk to other Docker containers or communicate via the internet.

6.3.3 Kubernetes

Kubernetes is a service that runs on cloud infrastructures. It provides a single point of contact with the machinery of
your cluster deployment, and allows a user to specify the computational requirements that they need (e.g., how many
machines, how many CPUs per machine, how much RAM). Then, it handles the resources on the cluster and ensures
that these resources are always available. If something goes down, kubernetes will try to automatically bring it back
up.

Kubernetes can only manage the computing resources that it is given. This means that it generally can not create new
resources on its own (with the exception of disk space).

The following sections describe some objects in Kubernetes that are most relevant for JupyterHub.

6.3. Tools used in a JupyterHub Deployment 63

https://cloud.google.com/
create-k8s-cluster.html
https://kubernetes.io/

Zero to JupyterHub, Release 0.4

Processes

Are any program that is running on a machine. For example, a Jupyter Notebook creates several processes that handle
the execution of code and the display in the browser. This isn’t technically a Kubernetes object, since literally any
computer has processes that run on it, but Kubernetes does keep track of running processes in order to ensure that they
remain running if needed.

Pods

Pods are essentially a collection of one or more containers that run together. You can think of them as a way of
combining containers that, as a group, accomplish some goal.

For example, say you want to create a web server that is open to the world, but you also want authentication so that
only a select group of users can access it. You could use a single pod with two containers.

• One that does the authentication. It would have something like Apache specified in its container image, and
would be connected to the outside world.

• One that receives information from the authentication container, and does something fancy with it (maybe it
runs a python process).

This is useful because it lets you compatmentalize the components of the service that you want to run, which makes
things easier to manage and keeps things more stable.

For more information about pods, see the Kubernetes documentation about pods.

Deployments

A deployment is a collection of pods on kubernetes. It is how kubernetes knows exactly what containers and what
machines need to be running at all times. For example, if you have two pods: one that does the authenticating described
above, and another that manages a database, you can specify both in a deployment.

Kubernetes will ensure that both pods are active, and if one goes down then it will try to re-create it. It does this
by continually checking the current state of the pods, and then comparing this with the original specification of the
deployment. If there are differences between the current state vs. the specification of the deployment, Kubernetes will
attempt to make changes until the current state matches the specification.

For more information about deployments, see the Kubernetes documentation about deployment.

Note: Users don’t generally “create” deployments directly, they are instead generated from a set of instructions that
are sent to Kubernetes. We’ll cover this in the section on “Helm”.

Service

A service is simply a stable way of referring to a deployment. Kubernetes is all about intelligently handling dynamic
and quickly-changing computational environments. This means that the VMs running your pods may change, IP
addresses will be different, etc. However you don’t want to have to re-orient yourself every time this happens. A
Kubernetes service keeps track of all these changes on the backend, and provides a single address to manage your
deployment.

For more information about services, see the Kubernetes documentation about services.

64 Chapter 6. Reference

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/

Zero to JupyterHub, Release 0.4

Namespace

Finally, a namespace defines a collection of objects in Kubernetes. It is generally the most “high-level” of the groups
we’ve discussed thus far. For example, a namespace could be a single class running with JupyterHub.

For more information about namespaces, see the Kubernetes documentation on namespaces.

Persistent Volume Claim

Persistent Volume Claims are a way to have persistent storage without being tied down to one specific computer or
machine. Kubernetes is about that flexibility, and that means that we don’t want to lock ourselves in to a particular
operating system just because our files are already on it. Persistent Volume Claims help deal with this problem by
knowing how to convert files between disk types (e.g., AWS vs. Google disks).

For more information on Persistent Volume Claims, see the Kubernetes documentation on persistent volumes.

6.3.4 Helm

Helm is a way of specifying kubernetes objects with a standard template.

Charts

The way that Helm controls kubernetes is with templates of structured information that specify some computational
requirements. These templates are called “charts”, or “helm charts”. They contain all of the necessary information for
kubernetes to generate:

• a deployment object

• a service object

• a persistent volume object for a deployment.

• collections of the above components

They can be installed into a namespace, which causes kubernetes to begin deploying the objects above into that
namespace.

Charts have both names and versions, which means that you can easily update them and build off of them. There are
community maintained charts available, and we use a chart to install and upgrade JupyterHub in this guide. In our
case, the helm chart is a file called config.yaml.

Releases

A release is basically a specific instantiation of a helmchart inserted into a particular namespace. If you’d like to
upgrade your kubernetes deployment (say, by changing the amount of RAM that each user should get), then you can
change the helm chart, then re-deploy it to your kubernetes cluster. This generates a new version of the release.

6.3.5 JupyterHub

JupyterHub is a way of utilizing the components above in order to provide computational environments that users
can access remotely. It exists as two kubernetes deployments, Proxy and Hub, each of which has one pod. Each
deployment accomplishes some task that, together, make up JupyterHub. Finally, the output of JupyterHub is a user
pod, which specifies the computational environment in which a single user will operate. So essentially a JupyterHub
is a collection of:

6.3. Tools used in a JupyterHub Deployment 65

https://kubernetes.io/docs/tasks/administer-cluster/namespaces/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://helm.sh/
https://github.com/kubernetes/charts/tree/master/stable

Zero to JupyterHub, Release 0.4

• Pods that contain the JupyterHub Machinery

• A bunch of user pods that are constantly being created or destroyed.

Below we’ll describe the primary JupyterHub pods.

Proxy Pod

This is the user-facing pod. It provides the IP address that people will go to in order to access JupyterHub. When a
new users goes to this pod, it will decide whether to:

• send that user to the Hub pod, which will create a container for that user, or

• if that user’s container already exists, send them directly to that container instead.

Information about the user’s identity is stored as a cookie on their computer. This is how the proxy pod knows whether
a user already has a running container.

Hub Pod

Receives traffic from the proxy pod. It has 3 main running processes:

1. An authenticator, which can verify a user’s account. It also contains a process.

2. A “KubeSpawner” that talks to the kubernetes API and tells it to spawn pods for users if one doesn’t already
exist. KubeSpawner will tell kubernetes to create a pod for a new user, then it will tell the the Proxy Pod that
the user’s pod has been created.

3. An admin panel that has information about who has pods created, and what kind of usage exists on the cluster.

6.4 Glossary

A partial glossary of terms used in this guide. For more complete descriptions of the components in JupyterHub, see
Tools used in a JupyterHub Deployment. Here we try to keep the definition as succinct and relevant as possible, and
provide links to learn more details.

admin user A user who can access the JupyterHub admin panel. They can start/stop user pods, and potentially access
their notebooks.

authenticator The way in which users are authenticated to log into JupyterHub. There are many authenticators
available, like GitHub, Google, MediaWiki, Dummy (anyone can log in), etc.

culler A separate process that stops the user pods of users who have not been active in a configured interval.

docker image A docker image is similar to a recipe that Docker can use to build a working space which gives users
the tools, libraries, and capabilities to be productive.

environment variables A set of named values that can affect the way running processes will behave on a computer.
Some common examples are PATH, HOME, and EDITOR.

persistent storage A filesystem attached to a user pod that allows the user to store notebooks and files that persist
across multiple logins.

repo2docker A tool which lets you quickly convert a GitHub repository into a Docker image that can be used as a
base for your JupyterHub instance.

66 Chapter 6. Reference

http://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html
https://en.wikipedia.org/wiki/Environment_variable
https://github.com/jupyter/repo2docker

CHAPTER 7

Institutional support

This guide and the associated helm chart would not be possible without the amazing institutional support from the
following organizations (and the organizations that support them!)

• UC Berkeley Data Science Division

• Berkeley Institute for Data Science

• Cal Poly, San Luis Obispo

• Simula Research Institute

67

https://data.berkeley.edu/
https://bids.berkeley.edu/
https://www.calpoly.edu/
https://www.simula.no/

Zero to JupyterHub, Release 0.4

68 Chapter 7. Institutional support

Index

A
admin user, 66
authenticator, 66

C
culler, 66

D
docker image, 66

E
environment variables, 66

P
persistent storage, 66

R
repo2docker, 66

69

	Getting to Step Zero: your Kubernetes cluster
	Creating a Kubernetes Cluster
	Step Zero: Kubernetes on Google Cloud
	Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)
	Step Zero: Kubernetes on Amazon Web Services (AWS)
	JupyterHub on Red Hat OpenShift

	Creating your JupyterHub
	Getting started with JupyterHub
	Setting up Helm
	Setting up JupyterHub
	Turning Off JupyterHub and Computational Resources

	Customization Guide
	Extending your JupyterHub setup
	Customizing the User Environment
	User Resources
	User storage in JupyterHub
	User Management

	Administrator Guide
	The JupyterHub Architecture
	Debugging Kubernetes
	Authentication
	Speed and Optimization
	Security
	Upgrading your JupyterHub Kubernetes deployment
	FAQ
	Advanced Topics
	Appendix: Projecting deployment costs

	Resources from the community
	Community-authored documentation
	Zero to JupyterHub Gallery of Deployments

	Reference
	Helm Chart Configuration Reference
	Official JupyterHub and Project Jupyter Documentation
	Tools used in a JupyterHub Deployment
	Glossary

	Institutional support

