

 Next

Zero to JupyterHub

JupyterHub [https://github.com/jupyterhub/jupyterhub] is a tool that allows you to quickly utilize cloud computing
infrastructure to manage a hub that enables your users to interact remotely
with a computing environment that you specify. JupyterHub offers a useful way
to standardize the computing environment of a group of people (e.g.,
for a class of students or an analytics team), as well as allowing
people to access the
hub remotely.

This growing collection of information will help you set up your own
JupyterHub instance. It is in an early stage, so the information and
tools may change quickly.

If you have tips or deployments that you would like to share, see
Resources from the community. If you see anything that is incorrect
or have any questions, feel free to reach out at the issues page [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues].

Getting to Step Zero: your Kubernetes cluster

This section describes a Kubernetes cluster and outlines how to complete Step Zero: your Kubernetes cluster for
different cloud providers and infrastructure.

Step Zero: your Kubernetes cluster

	Creating a Kubernetes Cluster

	Step Zero: Kubernetes on Google Cloud

	Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)

	Step Zero: Kubernetes on Amazon Web Services (AWS)

	JupyterHub on Red Hat OpenShift

Creating your JupyterHub

This tutorial starts from Step Zero: your Kubernetes cluster and describes the
steps needed for you to create a complete initial JupyterHub deployment.
This will use the JupyterHub Helm chart which provides sensible defaults for
an initial deployment.

To begin, go to Setting up Helm.

Creating your JupyterHub

	Getting started with JupyterHub

	Setting up Helm

	Setting up JupyterHub

	Turning Off JupyterHub and Computational Resources

Customization Guide

JupyterHub can be configured and customized to fit a variety of deployment
requirements. If you would like to expand JupyterHub, customize its setup,
increase the computational resources available for users, or change
authentication services, this guide will walk you through the steps.
See the Helm Chart Configuration Reference for a list of frequently
used configurable helm chart fields.

Customization Guide

	Extending your JupyterHub setup
	Applying configuration changes

	Customizing the User Environment
	Use an existing Docker image

	Build a custom Docker image with repo2docker

	Use JupyterLab by default

	Set environment variables

	Pre-populating user’s $HOME directory with files

	User Resources
	Set user memory and CPU guarantees / limits

	Modifying user storage type and size

	Expanding and contracting the size of your cluster

	User storage in JupyterHub
	How can this process break down?

	Configuration

	Turn off per-user persistent storage

	User Management
	Culling user pods

	Admin Users

	Authenticating Users

Administrator Guide

This section provides information on managing and maintaining a staging or
production deployment of JupyterHub. It has considerations for managing
cloud-based deployments and tips for maintaining your deployment.

Administrator Guide

	The JupyterHub Architecture

	Debugging Kubernetes
	Debugging commands

	Troubleshooting Examples

	Authentication
	Authenticating with OAuth2

	Full Example of Google OAuth2

	Authenticating with LDAP

	Adding a Whitelist

	Speed and Optimization
	Picking a Scheduler Strategy

	Pre-pulling

	Security
	Reporting a security issue

	HTTPS

	Secure access to Helm

	Audit Cloud Metadata server access

	Delete the Kubernetes Dashboard

	Use Role Based Access Control (RBAC)

	Kubernetes API Access

	Kubernetes Network Policies

	Upgrading your JupyterHub Kubernetes deployment
	Major helm-chart upgrades

	Subtopics

	Troubleshooting

	FAQ
	I thought I had deleted my cloud resources, but they still show up. Why?

	How does billing for this work?

	Advanced Topics
	Ingress

	Arbitrary extra code and configuration in jupyterhub_config.py

	Picking a Scheduler Strategy

	Pre-pulling Images for Faster Startup

	Appendix: Projecting deployment costs
	Cost calculators for cloud providers

	Factors influencing costs

	Interactive Cost Estimator (rough estimate)

	Examples

Resources from the community

This section gives the community a space to provide information on setting
up, managing, and maintaining JupyterHub.

Important

We recognize that Kubernetes has many deployment options. As a project team
with limited resources to provide end user support, we rely on community
members to share their collective Kubernetes knowledge and JupyterHub
experiences.

Note

Contibuting to Z2JH. If you would like to help improve the Zero to
JupyterHub guide, please see the issues page [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues] as well as the contributor guide [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CONTRIBUTING.md].

We hope that you will use this section to share deployments with on a variety
of infrastructure and for different use cases.
There is also a community maintained list of users of this
Guide and the JupyterHub Helm Chart.

Please submit a pull request to add to this section. Thanks.

Resources from the community

	Community-authored documentation

	Zero to JupyterHub Gallery of Deployments

	Tips and command snippets

Reference

Reference

	Helm Chart Configuration Reference

	Official JupyterHub and Project Jupyter Documentation

	Tools used in a JupyterHub Deployment

	Glossary

Institutional support

This guide and the associated helm chart would not be possible without the
amazing institutional support from the following
organizations (and the organizations that support them!)

	UC Berkeley Data Science Division [https://data.berkeley.edu/]

	Berkeley Institute for Data Science [https://bids.berkeley.edu/]

	Cal Poly, San Luis Obispo [https://www.calpoly.edu/]

	Simula Research Institute [https://www.simula.no/]

 Creating a Kubernetes Cluster

 Previous
 Next

Creating a Kubernetes Cluster

Kubernetes’ documentation describes the many ways to set up a cluster [https://kubernetes.io/docs/setup/pick-right-solution/].
Here, we shall provide quick instructions for the most painless and
popular ways of getting setup in various cloud providers and on other
infrastructure:

	Google Cloud

	Microsoft Azure

	Amazon AWS

	Red Hat OpenShift

Note

	During the process of setting up JupyterHub, you’ll be creating some
files for configuration purposes. It may be helpful to create a folder
for your JuypterHub deployment to keep track of these files.

	If you are concerned at all about security (you probably should be), see
the Kubernetes best-practices guide [http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html]
for information about keeping your Kubernetes infrastructure secure.

 Zero to JupyterHub
 Step Zero: Kubernetes on Google Cloud

 Previous
 Next

Step Zero: Kubernetes on Google Cloud [https://cloud.google.com/]

Google Kubernetes Engine [https://cloud.google.com/kubernetes-engine/]
(GKE) is the simplest and most common way of setting
up a Kubernetes Cluster. You may be able to receive free credits [https://cloud.google.com/free/] for trying it out (though note that a
free account comes with limitations [https://cloud.google.com/free/docs/frequently-asked-questions#limitations]).
Either way, you will need to connect your credit card or other payment method to
your google cloud account.

	Go to https://console.cloud.google.com and log in.

	Enable the Kubernetes Engine API [https://console.cloud.google.com/apis/api/container.googleapis.com/overview].

	Use your preferred command line interface.

You have two options: a) use the Google Cloud Shell (no installation needed)
or b) install and use the gcloud command-line tool.
If you are unsure which to choose, we recommend beginning with option
“a” and using the Google Cloud Shell. Instructions
for each are detailed below:

	Use the Google Cloud Shell. Start the Google Cloud Shell
by clicking the button shown below. This will start an interactive shell
session within Google Cloud.

[image: ../_images/start_interactive_cli.png]
See the Google Cloud Shell docs [https://cloud.google.com/shell/docs/]
for more information.

	Install and use the gcloud command line tool.
This tool sends commands to Google Cloud and lets you do things like create
and delete clusters.

	Go to the gcloud command line tool downloads page [https://cloud.google.com/sdk/downloads]
to download and install the gcloud command line tool.

	See the gcloud documentation [https://cloud.google.com/pubsub/docs/quickstart-cli] for
more information on the gcloud command line tool.

	Install kubectl, which is a tool for controlling kubernetes. From
the terminal, enter:

gcloud components install kubectl

	Create a Kubernetes cluster on Google Cloud, by typing the following
command into either the Google Cloud shell or the gcloud command-line tool:

gcloud container clusters create <YOUR-CLUSTER> \
 --num-nodes=3 \
 --machine-type=n1-standard-2 \
 --zone=us-central1-b

where:

	--num-nodes specifies how many computers to spin up. The higher the
number, the greater the cost.

	--machine-type specifies the amount of CPU and RAM in each node. There
is a variety of types [https://cloud.google.com/compute/docs/machine-types]
to choose from. Picking something appropriate here will have a large effect
on how much you pay - smaller machines restrict the max amount of RAM each
user can have access to but allow more fine-grained scaling, reducing cost.
The default (n1-standard-2) has 2CPUs and 7.5G of RAM each, and might not
be a good fit for all use cases!

	--zone specifies which data center to use. Pick something that is not
too far away from your users. You can find a list of them here [https://cloud.google.com/compute/docs/regions-zones/regions-zones#available].

Note

Consider setting a cloud budget [https://cloud.google.com/billing/docs/how-to/budgets]
for your Google Cloud account in order to make sure you don’t accidentally
spend more than you wish to.

	To test if your cluster is initialized, run:

kubectl get node

The response should list three running nodes.

	Give your account super-user permissions, allowing you to perform all
the actions needed to set up JupyterHub.

kubectl create clusterrolebinding cluster-admin-binding \
 --clusterrole=cluster-admin \
 --user=<YOUR-EMAIL-ADDRESS>

Congrats. Now that you have your Kubernetes cluster running, it’s time to
begin Creating your JupyterHub.

 Creating a Kubernetes Cluster
 Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)

 Previous
 Next

Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)

	Prepare your Azure shell environment. You have two options, one is to use
the Azure interactive shell, the other is to install the Azure command-line
tools locally. Instructions for each are below.

	Using the Azure interactive shell. The Azure Portal [https://portal.azure.com]
contains an interactive shell that you can use to communicate with your
Kubernetes cluster. To access this shell, go to portal.azure.com [https://portal.azure.com]
and click on the button below.

[image: ../_images/cli_start.png]

Note

	If you get errors like could not retrieve token from local cache,
try refreshing your browser window.

	The first time you do this, you’ll be asked to create a storage
account where your shell filesystem will live.

	Install command-line tools locally. You can access the Azure CLI via
a package that you can install locally.

To do so, first follow the installation instructions [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli] in the
Azure documentation. Then run the following command to connect your local
CLI with your account:

az login

You’ll need to open a browser and follow the instructions in your terminal
to log in.

	Activate the correct subscription. Azure uses the concept
of subscriptions to manage spending. You can
get a list of subscriptions your account has access to by running:

az account list --refresh --output table

Pick the subscription you want to use for creating the cluster, and set that
as your default.

az account set -s <YOUR-CHOSEN-SUBSCRIPTION-NAME>

	Create a resource group. Azure uses the concept of
resource groups to group related resources together.
We need to create a resource group in a given data center location. We will create
computational resources within this resource group.

az group create \
 --name=<RESOURCE-GROUP-NAME> \
 --location=centralus \
 --output table

where:

	--name specifies the name of your resource group. We recommend using something
that uniquely identifies this hub. For example, if you are creating a resource group
for UC Berkeley’s 2018 Spring Data100 Course, you may give it a
<RESOURCE-GROUP-NAME> of ucb_2018sp_data100_hub.

	--location specifies the location of the data center you want your resource to be in.
In this case, we used the centralus location. For other options, see the
Azure list of locations that support AKS [https://docs.microsoft.com/en-us/azure/aks/container-service-quotas#region-availability].

	--output table specifies that the output should be in human readable
format, rather than the default JSON output. We shall use this with most
commands when executing them by hand.

Note

Consider setting a cloud budget [https://docs.microsoft.com/en-us/partner-center/set-an-azure-spending-budget-for-your-customers]
for your Azure account in order to make sure you don’t accidentally
spend more than you wish to.

	Enable the cloud APIs required before creating a cluster.

The following commands enable various Azure tools that we’ll need in
creating and managing the JupyterHub.

az provider register --name Microsoft.Network --wait
az provider register --name Microsoft.Compute --wait
az provider register --name Microsoft.Storage --wait
az provider register --name Microsoft.ContainerService --wait

Note

Each of these commands may take up to several minutes to complete.

	Choose a cluster name.

In the following steps we’ll run commands that ask you to input a cluster
name. We recommend using something descriptive and short. We’ll refer to
this as <CLUSTER-NAME> for the remainder of this section.

The next step will create a few files on your filesystem, so first create
a folder in which these files will go. We recommend giving it the same
name as your cluster:

mkdir <CLUSTER-NAME>
cd <CLUSTER-NAME>

	Create an ssh key to secure your cluster.

ssh-keygen -f ssh-key-<CLUSTER-NAME>

It will prompt you to add a password, which you can leave empty if you wish.
This will create a public key named ssh-key-<CLUSTER-NAME>.pub and a private key named
ssh-key-<CLUSTER-NAME>. Make sure both go into the folder we created earlier,
and keep both of them safe!

Note

This command will also print out something to your terminal screen. You
don’t need to do anything with this text.

	Create an AKS cluster.

The following command will request a Kubernetes cluster within the resource
group that we created earlier.

az aks create --name <CLUSTER-NAME> \
 --resource-group <RESOURCE-GROUP-NAME> \
 --ssh-key-value ssh-key-<CLUSTER-NAME>.pub \
 --node-count 3 \
 --node-vm-size Standard_D2s_v3 \
 --kubernetes-version 1.8.2 \
 --output table

where:

	--name is the name you want to use to refer to your cluster

	--resource-group is the ResourceGroup you created in step 4

	--ssh-key-value is the ssh public key created in step 7

	--node-count is the number of nodes you want in your kubernetes cluster

	--node-vm-size is the size of the nodes you want to use, which varies based on
what you are using your cluster for and how much RAM/CPU each of your users need.
There is a list of all possible node sizes [https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs]
for you to choose from, but not all might be available in your location.

	--kubernetes-version is the version of Kubernetes we want to use.

This should take a few minutes and provide you with a working Kubernetes cluster!

	If you’re using the Azure CLI locally, install kubectl [https://kubernetes.io/docs/reference/kubectl/overview/], a tool
for accessing the Kubernetes API from the commandline:

az aks install-cli

Note: kubectl is already installed in Azure Cloud Shell.

	Get credentials from Azure for kubectl to work:

az aks get-credentials \
 --name <CLUSTER-NAME> \
 --resource-group <RESOURCE-GROUP-NAME> \
 --output table

where:

	--name is the name you gave your cluster in step 7

	--resource-group is the ResourceGroup you created in step 4

	Check if your cluster is fully functional

kubectl get node

The response should list three running nodes and their kubernetes versions!
Each node should have the status of Ready, note that this may take a
few moments.

Note

Azure AKS is still in preview, and not all features might work as
intended. In particular,

	You have to not use RBAC, since AKS does not support it
yet.

	You should skip step 2 (granting RBAC rights) with the “initialization”
section when setting up helm.

Congrats. Now that you have your Kubernetes cluster running, it’s time to
begin Creating your JupyterHub.

 Step Zero: Kubernetes on Google Cloud
 Step Zero: Kubernetes on Amazon Web Services (AWS)

 Previous
 Next

Step Zero: Kubernetes on Amazon Web Services (AWS)

AWS does not have native support for Kubernetes, however there are
many organizations that have put together their own solutions and
guides for setting up Kubernetes on AWS.

This guide uses kops to setup a cluster on AWS. This should be seen as a rough template you will use to
setup and shape your cluster.

Procedure:

	Create a IAM Role

This role will be used to give your CI host permission to create and destroy resources on AWS

	AmazonEC2FullAccess

	IAMFullAccess

	AmazonS3FullAccess

	AmazonVPCFullAccess

	Route53FullAccess (Optional)

	Create a new instance to use as your CI host. This node will deal with provisioning and tearing down the cluster.

This instance can be small (t2.micro for example).

When creating it, assign the IAM role created in step 1.

	Install kops and kubectl on your CI host

Follow the instructions here: https://github.com/kubernetes/kops/blob/master/docs/install.md

	Setup an ssh keypair to use with the cluster

ssh-keygen

	Choose a cluster name

Since we are not using pre-configured DNS we will use the suffix “.k8s.local”. Per the docs, if the DNS name ends in .k8s.local the cluster will use internal hosted DNS.

export NAME=<somename>.k8s.local

	Create a S3 bucket to store your cluster configuration

Since we are on AWS we can use a S3 backing store. It is recommended to enabling versioning on the S3 bucket.
We don’t need to pass this into the KOPS commands. It is automatically detected by the kops tool as an env variable.

export KOPS_STATE_STORE=s3://<your_s3_bucket_name_here>

	Set the region to deploy in

export REGION=`curl -s http://169.254.169.254/latest/dynamic/instance-identity/document|grep region|awk -F\" '{print $4}'`

	Set the availability zones for the nodes

For this guide we will be allowing nodes to be deployed in all AZs:

export ZONES=$(aws ec2 describe-availability-zones --region $REGION | grep ZoneName | awk '{print $2}' | tr -d '"')
export ZONES=$(echo $ZONES | tr -d " " | rev | cut -c 2- | rev)

	Create the cluster

For a basic setup run the following (All sizes measured in GB):

kops create cluster $NAME \
 --zones $ZONES \
 --authorization RBAC \
 --master-size t2.micro \
 --master-volume-size 10 \
 --node-size t2.medium \
 --node-volume-size 10 \
 --yes

For a more secure setup add the following params to the kops command:

--topology private \
--networking weave \

This creates a cluster where all of the masters and nodes are in private subnets and don’t have external IP addresses. A mis-configured security group or insecure ssh configuration is less likely to compromise the cluster.
In order to SSH into your cluster you will need to set up a bastion node. Make sure you do that step below.
If you have the default number of elastic IPs (10) you may need to put in a request to AWS support to bump up that limit. The alternative is reducing the number of zones specified.

More reading on this subject:
https://github.com/kubernetes/kops/blob/master/docs/networking.md

Settings to consider (not covered in this guide):

--vpc
 Allows you to use a custom VPC or share a VPC
 https://github.com/kubernetes/kops/blob/master/docs/run_in_existing_vpc.md
--master-count
 Spawns more masters in one or more VPCs
 This improves redudancy and reduces downtime during cluster upgrades
--master-zones
 specify zones to run the master in
--node-count
 Increases the total nodes created (default 2)
--master/node-security-groups
 Allows you to specify additional security groups to put the masters and nodes in by default
--ssh-access
 By default SSH access is open to the world (0.0.0.0).
 If you are using a private topology, this is not a problem.
 If you are using a public topology make sure your ssh keys are strong and you keep sshd up to date on your cluster's nodes.

Note

Consider setting a cloud budget [https://aws.amazon.com/aws-cost-management/aws-budgets/]
for your AWS account in order to make sure you don’t accidentally
spend more than you wish to.

	Wait for the cluster to start-up

Running the ‘kops validate cluster’ command will tell us what the current state of setup is.
If you see “can not get nodes” initially, just be patient as the cluster can’t report until a
few basic services are up and running.

Keep running ‘kops validate cluster’ until you see “Your cluster $NAME is ready” at the end of the output.

time until kops validate cluster; do sleep 15 ; done can be used to automate the waiting process.

If at any point you wish to destroy your cluster after this step, run kops delete cluster $NAME --yes

	Confirm that kubectl is connected to your Kubernetes cluster.

Run:

kubectl get nodes

You should see a list of two nodes, each beginning with ip.

If you want to run kubectl from a box not on AWS, you can use run the following on AWS: kops export kubecfg

To use kubctl and helm from a local machine, copy the contents of ~/.kube/config to the same place on your local system. If you wish to put the kube config file in a different location, you will need to export KUBECONFIG=<other kube config location>

	Configure ssh bastion

Skip this step if you did not go with the private option above!

Ideally we would simply be passing the –bastion flag into the kops command above. However that flag is not functioning as intended at the moment. https://github.com/kubernetes/kops/issues/2881

Instead we need to follow this guide: https://github.com/kubernetes/kops/blob/master/docs/examples/kops-tests-private-net-bastion-host.md#adding-a-bastion-host-to-our-cluster

At this point there are a few public endpoints left open which need to be addressed

	Bastion ELB security group defaults to access from 0.0.0.0

	API ELB security group defaults to access from 0.0.0.0

	Enable dynamic storage on your Kubernetes cluster.
Create a file, storageclass.yml on your local computer, and enter
this text:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 annotations:
 storageclass.beta.kubernetes.io/is-default-class: "true"
 name: gp2
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2

Next, run this command:

kubectl apply -f storageclass.yml

This enables dynamic provisioning [https://kubernetes.io/docs/concepts/storage/persistent-volumes/#dynamic] of
disks, allowing us to automatically assign a disk per user when they log
in to JupyterHub.

Encryption

There are simple methods for encrypting your Kubernetes cluster. Illustrated here are simple methods for encryption at rest and encryption in transit.

Encryption at Rest

Instead of performing step 13 above. Create the following storageclass.yml file on your local computer:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 annotations:
 storageclass.beta.kubernetes.io/is-default-class: "true"
 name: gp2
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
 encrypted: "true"

The main difference is the addition of the line encrypted: "true" and make note that true is in double quotes.

Next run these commands:

kubectl delete storageclass gp2
kubectl apply -f storageclass.yml

Kubernetes will not allow you to modify storageclass gp2 in order to add the encrypted flag so you will have to delete it first.
This will encrypt any dynamic volumes (such as your notebook)created by Kubernetes, it will not encrypt the storage on the Kubernetes nodes themselves.

Encryption in Transit

In step 9 above, set up the cluster with weave by including the --networking weave flag in the kops create command above.
Then perform the following steps:

	Verify weave is running:

kubectl --namespace kube-system get pods

You should see several pods of the form weave-net-abcde

	Create Kubernetes secret with a private password of sufficient strength. A random 128 bytes is used in this example:

openssl rand -hex 128 >weave-passwd
kubectl create secret -n kube-system generic weave-passwd --from-file=./weave-passwd

It is important that the secret name and its value (taken from the filename) are the same. If they do not match you may get a ConfigError

	Patch Weave with the password:

kubectl patch --namespace=kube-system daemonset/weave-net --type json -p '[{ "op": "add", "path": "/spec/template/spec/containers/0/env/0", "value": { "name": "WEAVE_PASSWORD", "valueFrom": { "secretKeyRef": { "key": "weave-passwd", "name": "weave-passwd" } } } }]'

If you want to remove the encryption you can use the following patch:

kubectl patch --namespace=kube-system daemonset/weave-net --type json -p '[{ "op": "remove", "path": "/spec/template/spec/containers/0/env/0"}]'

	Check to see that the pods are restarted. To expedite the process you can delete the old pods.

	You can verify encryption is turned on with the following command:

kubectl exec -n kube-system weave-net-<pod> -c weave -- /home/weave/weave --local status

You should see encryption: enabled

If you really want to insure encryption is working, you can listen on port 6783 of any node. If the traffic looks like gibberish, you know it is on.

Congrats. Now that you have your Kubernetes cluster running, it’s time to
begin Creating your JupyterHub.

 Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)
 JupyterHub on Red Hat OpenShift

 Previous
 Next

JupyterHub on Red Hat OpenShift

OpenShift [https://openshift.org/] from RedHat is a cluster manager based on Kubernetes.

For setting up JupyterHub on OpenShift, check out the JupyterHub on OpenShift [https://github.com/jupyter-on-openshift/jupyterhub-quickstart]
project. It provides an OpenShift template based JupyterHub deployment. Zero to JupyterHub uses
helm [https://helm.sh] which is currently usable with OpenShift; yet deploying helm on OpenShift
is somewhat complicated (see RedHat’s blog post on Getting Started with Helm on OpenShift [https://blog.openshift.com/getting-started-helm-openshift/]).

Additional resources about Jupyter on OpenShift

	An excellent series of OpenShift blog posts on Jupyter and OpenShift
authored by Red Hat developer, Graham Dumpleton, are
available on the OpenShift blog [https://blog.openshift.com/tag/jupyter/].

 Step Zero: Kubernetes on Amazon Web Services (AWS)
 Getting started with JupyterHub

 Previous
 Next

Getting started with JupyterHub

JupyterHub lets you create custom computing environments that
can be accessed remotely (e.g., at a specific URL) by multiple users.

This guide acts as an assistant to guide you through the process of setting
up your JupyterHub deployment using Kubernetes. It helps you connect
and configure the following things:

	A cloud provider such Google Cloud, Microsoft Azure, Amazon EC2, and
others

	Kubernetes to manage resources on the cloud

	Helm to configure and control Kubernetes

	Docker to use containers that standardize computing environments

	JupyterHub to manage users and deploy Jupyter notebooks

You already are well on your way to understanding what it means (procedurally)
to deploy Jupyterhub.

Verifying JupyterHub dependencies

At this point, you should have completed Step Zero and have an operational
Kubernetes cluster. You will already have a cloud provider/infrastructure
and kubernetes and docker installed.

If you need to create a Kubernetes cluster, see
Creating a Kubernetes Cluster.

We also depend on Helm and the JupyterHub Helm chart for your JupyterHub
deployment. We’ll deploy them in this section. Let’s begin by moving on to
Setting up Helm.

Note

For a more extensive description of the tools and services that JupyterHub
depends upon, see our Tools used in a JupyterHub Deployment page.

 JupyterHub on Red Hat OpenShift
 Setting up Helm

 Previous
 Next

Setting up Helm

Helm [https://helm.sh/], the package manager for Kubernetes, is a useful tool
to install, upgrade and manage applications on a Kubernetes cluster. We will be
using Helm to install and manage JupyterHub on our cluster.

Helm works by initializing itself both locally (on your computer) and remotely
(on your kubernetes cluster). When you run helm commands, your local helm
client sends instructions to the Tiller, which exists on your
Kubernetes cluster, and is controlled by the server-side helm install.

Installation

The simplest way to install helm is to run Helm’s installer script at a
terminal:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

Alternative methods for helm installation [https://github.com/kubernetes/helm/blob/master/docs/install.md]
exist if you prefer to install without using the script.

Initialization

After installing helm on your machine, initialize helm on your Kubernetes
cluster. At a terminal for your local machine (or within an interactive cloud
shell from your provider), enter:

	Set up a ServiceAccount [https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/]
for use by Tiller, the server side component of helm.

kubectl --namespace kube-system create serviceaccount tiller

Azure AKS: If you’re on Azure AKS, you should now skip directly to step 3.**

	Give the ServiceAccount RBAC [https://kubernetes.io/docs/admin/authorization/rbac/] full permissions to
manage the cluster.

While most clusters have RBAC enabled and you need this
line, you must skip this step if your kubernetes cluster does not have
RBAC enabled (for example, if you are using Azure AKS).

kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller

	Set up Helm on the cluster.

helm init --service-account tiller

This command only needs to run once per Kubernetes cluster.

Note

The local and remote version of helm must be the same in order to
ensure they can talk to each other. If you wish to run helm commands
from a new computer than the one used to run the commands above, you
must re-initialize it by running the following modified version of
the init command:

helm init --client-only --service-account tiller

This will initialize helm locally, according to the version that is
running remotely on the cluster. Note that this requires kubectl
to point to the correct kubernetes cluster. See the kubernetes context
manager [https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/]
for more details.

Verify

You can verify that you have the correct version and that it installed
properly by running:

helm version

It should provide output like:

Client: &version.Version{SemVer:"v2.8.1", GitCommit:"46d9ea82e2c925186e1fc620a8320ce1314cbb02", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.8.1", GitCommit:"46d9ea82e2c925186e1fc620a8320ce1314cbb02", GitTreeState:"clean"}

Make sure you have at least version 2.8.1!

If you receive an error that the Server is unreachable, do another helm version
in 15-30 seconds, and it should display the Server version.

Secure Helm

Ensure that tiller is secure [https://engineering.bitnami.com/articles/helm-security.html] from access inside the cluster:

kubectl --namespace=kube-system patch deployment tiller-deploy --type=json --patch='[{"op": "add", "path": "/spec/template/spec/containers/0/command", "value": ["/tiller", "--listen=localhost:44134"]}]'

Next Step

Congratulations. Helm is now set up. The next step is to
install JupyterHub!

 Getting started with JupyterHub
 Setting up JupyterHub

 Previous
 Next

Setting up JupyterHub

Now that we have a Kubernetes cluster and
helm setup, we can begin setting up a JupyterHub.

Prepare configuration file

This step prepares a configuration file (config file). We will use the
YAML [https://en.wikipedia.org/wiki/YAML] file format to specify
JupyterHub’s configuration.

It’s important to save the config file in a safe place. The config file is
needed for future changes to JupyterHub’s settings.

For the following steps, use your favorite code editor. We’ll use the
nano [https://en.wikipedia.org/wiki/GNU_nano] editor as an example.

	Create a file called config.yaml. Using the nano editor, for example,
entering nano config.yaml at the terminal will start the editor and
open the config file.

	Create a random hex string to use as a security token. Run this command
in a terminal

openssl rand -hex 32

Copy the output for use in the next step

	Insert these lines into the config.yaml file. When editing YAML files,
use straight quotes and spaces and avoid using curly quotes or tabs.
Substitute RANDOM_STRING below with the output of openssl rand -hex 32
from step 2.

proxy:
 secretToken: "<OUTPUT-OF-`openssl rand -hex 32`>"

	Azure AKS only If you’re on Microsoft Azure AKS, you must disable
RBAC. Do so by putting the following in config.yaml

rbac:
 enabled: false

See the RBAC documentation
for more details.

	Save the config.yaml file.

Install JupyterHub

	Let’s add the JupyterHub helm repository [https://github.com/kubernetes/helm/blob/master/docs/chart_repository.md]
to your helm, so you can install JupyterHub from it. This makes it easy to refer to the JupyterHub chart
without having to use a long URL each time.

helm repo add jupyterhub https://jupyterhub.github.io/helm-chart/
helm repo update

This should show output like:

Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "jupyterhub" chart repository
Update Complete. ⎈ Happy Helming!⎈

	Now you can install the chart! Run this command from the directory that contains the
config.yaml file to spin up JupyterHub:

helm install jupyterhub/jupyterhub \
 --version=v0.6 \
 --name=<YOUR-RELEASE-NAME> \
 --namespace=<YOUR-NAMESPACE> \
 -f config.yaml

where:

	--name is an identifier used by helm to refer to this deployment.
You need it when you are changing the configuration of this install
or deleting it. Use something descriptive that you will easily
remember. For a class called data8 you might wish set the name to
data8-jupyterhub. In the future you can find out the name by
using helm list.

	--namespace is an identifier
used by Kubernetes [https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/]
(among other things) to identify a particular application that might
be running on a single Kubernetes cluster. You can install many
applications into the same Kubernetes cluster, and each instance of
an application is usually separated by being in its own namespace.
You’ll need the namespace identifier for performing any commands
with kubectl.

We recommend providing the same value to --name and --namespace
for now to avoid too much confusion, but advanced users of Kubernetes and
helm should feel free to use different values.

Note

	This step may take a moment, during which time there will be no output
to your terminal. JupyterHub is being installed in the background.

	If you get a release named <YOUR-RELEASE-NAME> already exists error, then
you should delete the release by running
helm delete --purge <YOUR-RELEASE-NAME>. Then reinstall by repeating this
step. If it persists, also do kubectl delete <YOUR-NAMESPACE> and try again.

	In general, if something goes wrong with the install step, delete the
Helm namespace by running helm delete --purge <YOUR-RELEASE-NAME>
before re-running the install command.

	If you’re pulling from a large Docker image you may get a
Error: timed out waiting for the condition error,
add a --timeout=SOME-LARGE-NUMBER
parameter to the helm install command.

	The --version parameter corresponds to the version of the helm chart,
not the version of JupyterHub. Each version of the JupyterHub helm chart
is paired with a specific version of JupyterHub. E.g., v0.6 of the helm
chart runs JupyterHub v0.8.1.

	While Step 2 is running, you can see the pods being created by entering in
a different terminal:

kubectl --namespace=<YOUR-NAMESPACE> get pod

	Wait for the hub and proxy pod to begin running.

	You can find the IP to use for accessing the JupyterHub with:

kubectl --namespace=<YOUR-NAMESPACE> get svc

The external IP for the proxy-public service should be accessible in a
minute or two.

Note

If the IP for proxy-public is too long to fit into the window, you
can find the longer version by calling:

kubectl --namespace=<YOUR-NAMESPACE> describe svc proxy-public --output=wide

	To use JupyterHub, enter the external IP for the proxy-public service in
to a browser. JupyterHub is running with a default dummy authenticator so
entering any username and password combination will let you enter the hub.

Congratulations! Now that you have JupyterHub running, you can
extend it in many ways. You can use a pre-built
image for the user container, build your own image, configure different
authenticators, and more!

 Setting up Helm
 Turning Off JupyterHub and Computational Resources

 Previous
 Next

Turning Off JupyterHub and Computational Resources

When you are done with your hub, you should delete it so you are no longer
paying money for it. The following sections describe how to delete your
JupyterHub resources on various cloud providers.

Tearing down your JupyterHub entails:

	Deleting your Kubernetes namespace, which deletes all objects created and managed by Kubernetes

	Deleting any computational resources you’ve requested from the cloud provider

	Running a final check to make sure there aren’t any lingering resources that haven’t been deleted
(e.g., storage volumes in some cloud providers)

For all cloud providers

Delete the helm namespace

The steps in this section must be performed for all cloud providers first,
before doing the cloud provider specific setup.

	First, delete the helm release. This deletes all resources that were created
by helm to make your jupyterhub.

helm delete <YOUR-HELM-RELEASE-NAME> --purge

	Next, delete the namespace the hub was installed in. This deletes any disks
that may have been created to store user’s data, and any IP addresses that
may have been provisioned.

kubectl delete namespace <YOUR-NAMESPACE>

Google Cloud Platform

	Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will
delete the helm chart and delete the hub’s namespace. This must be done before proceeding.

	Delete the kubernetes cluster. You can list all the clusters you have.

gcloud container clusters list

You can then delete the one you want.

gcloud container clusters delete <CLUSTER-NAME> --zone=<CLUSTER-ZONE>

	Double check to make sure all the resources are now deleted, since anything you
have not deleted will cost you money! You can check the web console [https://console.cloud.google.com]
(make sure you are in the right project and account) to verify that everything
has been deleted.

At a minimum, check the following under the Hamburger (left top corner) menu:

	Compute -> Compute Engine -> Disks

	Compute -> Kubernetes Engine -> Container Clusters

	Tools -> Container Registry -> Images

	Networking -> Network Services -> Load Balancing

These might take several minutes to clear up, but they shouldn’t have anything
related to your JupyterHub cluster after you have deleted the cluster.

Microsoft Azure AKS

	Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will
delete the helm chart and delete the hub’s namespace. This must be done before proceeding.

	Delete your resource group. You can list your active resource groups with
the following command

az group list --output table

You can then delete the one you want with the following command

az group delete --name <YOUR-GROUP-NAME>

Be careful to delete the correct Resource Group, as doing so will irreversibly
delete all resources within the group!

	Double check to make sure all the resources are now deleted, since anything you
have not deleted will cost you money! You can check the web portal [https://portal.azure.com]
(check the “Resource Groups” page) to verify that everything has been deleted.

These might take several minutes to clear up, but they shouldn’t have anything
related to your JupyterHub cluster after you have deleted the resource group.

Amazon Web Services (AWS)

	Perform the steps in Delete the helm namespace. These cloud provider agnostic steps will
delete the helm chart and delete the hub’s namespace. This must be done before proceeding.

	on CI host:

kops delete cluster <CLUSTER-NAME> --yes
exit #(leave CI host)
Terminicate CI Host
aws ec2 stop-instances --intance-ids <aws-instance id of CI HOST>
aws ec2 terminate-instances --instance-ids <aws-instance id of CI HOST>

Note

cluster name was set as an env var aka: NAME=<somename>.k8s.local
Stopping the CI host will still incure disk storage and Ip address costs,
but the host can be restarted at a later date to resume using.

Note

Sometimes AWS fails to delete parts of the stack on a first pass. Be sure
to double-check that your stack has in fact been deleted, and re-perform
the actions above if needed.

 Setting up JupyterHub
 Extending your JupyterHub setup

 Previous
 Next

Extending your JupyterHub setup

The helm chart used to install JupyterHub has a lot of options for you to tweak.
For a semi-complete list of the changes you can apply via your helm-chart,
see the Helm Chart Configuration Reference.

Applying configuration changes

The general method to modify your Kubernetes deployment is to:

	Make a change to the config.yaml

	Run a helm upgrade:

helm upgrade <YOUR_RELEASE_NAME> jupyterhub/jupyterhub --version=v0.6 -f config.yaml

Where <YOUR_RELEASE_NAME> is the parameter you passed to --name when
installing jupyterhub with
helm install. If you don’t remember it, you can probably find it by doing
helm list.

	Wait for the upgrade to finish, and make sure that when you do
kubectl --namespace=<YOUR_NAMESPACE> get pod the hub and proxy pods are
in Ready state. Your configuration change has been applied!

For information about the many things you can customize with changes to
your helm chart, see Customizing the User Environment, User Resources, and
Helm Chart Configuration Reference.

 Turning Off JupyterHub and Computational Resources
 Customizing the User Environment

 Previous
 Next

Customizing the User Environment

Note

For a list of all the options you can configure with your helm
chart, see the Helm Chart Configuration Reference.

This page contains instructions for a few common ways you can extend the
user experience for your kubernetes deployment.

The user environment is the set of packages, environment variables, and
various files that are present when the user logs into JupyterHub. The user may
also see different tools that provide interfaces to perform specialized tasks,
such as RStudio, RISE, JupyterLab, and others.

Usually a docker image specifies the functionality and
environment that you wish to provide to users. The following sections will describe
how to use existing Docker images, how to create custom images, and how to set
environment variables.

Use an existing Docker image

Note

The Docker image you are using must have the jupyterhub package
installed in order to work. Moreover, the version of jupyterhub must
match the version installed by the helm chart that you’re using. For example,
v0.6 of the helm chart uses jupyterhub==0.8.1.

Note

You can find the configuration for the default Docker image used in this
guide here [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/tree/master/images/singleuser-sample].

Using an existing Docker image, that someone else has written and maintained,
is the simplest approach. For example, Project Jupyter maintains the
jupyter/docker-stacks [https://github.com/jupyter/docker-stacks/] repo,
which contains ready to use Docker images. Each image includes a set of
commonly used science and data science libraries and tools.

The scipy-notebook [https://hub.docker.com/r/jupyter/scipy-notebook/]
image, which can be found in the docker-stacks repo, contains
useful scientific programming libraries [https://github.com/jupyter/docker-stacks/tree/master/scipy-notebook]
pre-installed. This image may satisfy your needs. If you wish to use an
existing image, such as the scipy-notebook image, complete these steps:

	Modify your config.yaml file to specify the image. For example:

singleuser:
 image:
 name: jupyter/scipy-notebook
 tag: c7fb6660d096

Note

Container image names cannot be longer than 63 characters.

Always use an explicit tag, such as a specific commit.

Avoid using latest. Using latest might cause a several minute
delay, confusion, or failures for users when a new version of the image
is released.

	Apply the changes by following the directions listed in
apply the changes. These directions will pre-pull the image to all
the nodes in your cluster. This process may take several minutes to
complete.

Note

Docker images must have the jupyterhub package installed within them to
be used in this manner.

Build a custom Docker image with repo2docker

If you can’t find a pre-existing image that suits your needs, you can
create your own image. The easiest way to do this is with the package
repo2docker.

Note

repo2docker [https://github.com/jupyter/repo2docker] lets you quickly
convert a GitHub repository into a Docker image that can be used as a base
for your JupyterHub instance. Anything inside the GitHub repository
will exist in a user’s environment when they join your JupyterHub:

	If you include a requirements.txt file in the root level of the
repository, repo2docker will pip install the specified packages
into the Docker image to be built.

	If you have an environment.yaml file, conda will create an
environment based on this file’s specification.

	If you have a Dockerfile, repo2docker will ignore everything
else and just use the Dockerfile.

Below we’ll cover how to use repo2docker to generate a Docker image and
how to configure JupyterHub to build off of this image:

	Download and start Docker. You can do this by
downloading and installing Docker [https://store.docker.com/search?offering=community&platform=desktop%2Cserver&q=&type=edition]. Once you’ve started Docker,
it will show up as a tiny background application.

	Install repo2docker using pip:

pip install jupyter-repo2docker

If that command fails due to insufficient permissions, try it with the
command option, user:

pip install --user jupyter-repo2docker

	Create (or find) a GitHub repository you want to use. This repo should
have all materials that you want your users to be able to use. You may want
to include a pip [https://pip.readthedocs.io/en/latest/user_guide/#requirements-files] requirements.txt file to list packages, one per
file line, to install such as when using pip install. Specify the
versions explicitly so the image is fully reproducible. An example
requirements.txt follows:

jupyterhub==0.8.*
numpy==1.12.1
scipy==0.19.0
matplotlib==2.0

As noted above, the requirements must include jupyterhub, pinned to a
version compatible with the version of JupyterHub used by Helm chart.

	Use repo2docker to build a Docker image.

jupyter-repo2docker --user-name=jovyan --image=gcr.io/<PROJECT-NAME>/<IMAGE-NAME>:<TAG> --no-run <YOUR-GITHUB-REPOSITORY>

This tells repo2docker to fetch master of the GitHub repository,
and uses heuristics to build a docker image of it.

Note

	The project name should match your google cloud project’s name.

	Don’t use underscores in your image name. Other than this, the name can
be anything memorable. This bug with underscores will be fixed soon.

	The tag should be the first 6 characters of the SHA in the GitHub
commit desired for building the image since this improves
reproducibility.

	Push the newly-built Docker image to the cloud. You can either push
this to Docker Hub or to the gcloud docker repository. Here we’ll
demonstrate pushing to the gcloud repository:

gcloud docker -- push gcr.io/<project-name>/<image-name>:<tag>

	Edit the JupyterHub configuration to build from this image.
Edit config.yaml file to include these lines in it:

singleuser:
 image:
 name: gcr.io/<project-name>/<image-name>
 tag: <tag>

This step can be done automatically by setting a flag if desired.

	Tell helm to update JupyterHub to use this configuration. Use the
standard method to apply the changes to the config.

	Restart your notebook if you are already logged in. If you already have
a running JupyterHub session, you’ll need to restart it (by stopping and
starting your session from the control panel in the top right). New users
won’t have to do this.

Note

The contents of your GitHub repository might not show up if you have
enabled persistent storage. Disable persistent storage
if you want the
GitHub repository contents to show up.

	Enjoy your new computing environment! You should now have a live
computing environment built off of the Docker image we’ve created.

Use JupyterLab by default

Warning

As JupyterLab is a quickly-evolving tool right now, it is important to use
recent versions of JupyterLab. If you install JupyterLab with conda,
make sure to use the ``conda-forge`` channel instead of ``default``.

JupyterLab [http://jupyterlab.readthedocs.io/en/stable/index.html] is the next generation
user interface for Project Jupyter. It can be used with JupyterHub, both as an
optional interface and as a default.

In addition, a JupyterLab extension, called JupyterLab-Hub, provides a nice UI
for accessing the JupyterHub control panel from JupyterLab. These instructions
show how to install both JupyterLab and JupyterLab-Hub.

Note

If JupyterLab is installed on your hub (and with or without “JupyterLab Hub” installed),
users can always switch to the classic Jupyter Notebook by selecting menu item
“Help >> Launch Classic Notebook” or by replacing /lab with /tree in the URL
(if the server is running).
Similarly, you can access JupyterLab even if it is not the default by replacing /tree
in the URL with /lab.

	Install JupyterLab [https://github.com/jupyterlab/jupyterlab#installation]
and the JupyterLab Hub [https://github.com/jupyterhub/jupyterlab-hub#installation]
extension in your user image, for example in your Dockerfile:

FROM jupyter/base-notebook:27ba57364579

...
ARG JUPYTERLAB_VERSION=0.31.12
RUN pip install jupyterlab==$JUPYTERLAB_VERSION \
 && jupyter labextension install @jupyterlab/hub-extension
...

	Enable JupyterLab in your Helm configuration by adding the following snippet:

hub:
 extraEnv:
 JUPYTER_ENABLE_LAB: 1
 extraConfig: |
 c.KubeSpawner.cmd = ['jupyter-labhub']

	If you want users to launch automatically into JupyterLab instead of the classic
notebook, set the following setting in your Helm configuration:

singleuser:
 defaultUrl: "/lab"

This will put users into JupyterLab when they launch their server.

Note

JupyterLab is in beta, so use with caution!

Set environment variables

Another way to affect your user’s environment is by setting values for
environment variables. While you can set them up in your Docker image,
it is often easier to set them up in your helm chart.

To set them up in your helm chart, edit your config.yaml file
and apply the changes. For example, this code snippet will set the
environment variable EDITOR to the value vim:

singleuser:
 extraEnv:
 EDITOR: "vim"

You can set any number of static environment variables in the config.yaml
file.

Users can read the environment variables in their code in various ways. In
Python, for example, the following code will read in an environment variable:

import os
my_value = os.environ["MY_ENVIRONMENT_VARIABLE"]

Other languages will have their own methods of reading these environment
variables.

Pre-populating user’s $HOME directory with files

When persistent storage is enabled (which is the default), the contents of the
docker image’s $HOME directory will be hidden from the user. To make these
contents visible to the user, you must pre-populate the user’s
filesystem. To do so, you would include commands in the config.yaml that would
be run each time a user starts their server. The following pattern can be used
in config.yaml:

singleuser:
 lifecycleHooks:
 postStart:
 exec:
 command: ["cp", "-a", "src", "target"]

Each element of the command needs to be a separate item in the list.
Note that this command will be run from the $HOME location of the user’s
running container, meaning that commands that place files relative to ./
will result in users seeing those files in their home directory. You can use
commands like wget to place files where you like.

However, keep in mind that this command will be run each time a user
starts their server. For this reason, we recommend using nbgitpuller to
synchronize your user folders with a git repository.

Using nbgitpuller to synchronize a folder

We recommend using the tool nbgitpuller [https://github.com/data-8/nbgitpuller]
to synchronize a folder in your user’s filesystem with a git repository.

To use nbgitpuller, first make sure that you install it in your Docker
image [https://github.com/data-8/nbgitpuller#installation].
Once this is done, you’ll have access to the nbgitpuller CLI from within
JupyterHub. You can run it with a postStart hook with the following configuration

singleuser:
 lifecycleHooks:
 postStart:
 exec:
 command: ["gitpuller", "https://github.com/data-8/materials-fa17", "master", "materials-fa"]

This will synchronize the master branch of the repository to a folder called
$HOME/materials-fa each time a user logs in. See the nbgitpuller documentation [https://github.com/data-8/nbgitpuller]
for more information on using this tool.

Warning

nbgitpuller will attempt to automatically resolve merge conflicts if
your user’s repository has changed since the last sync. You should familiarize
yourself with the nbgitpuller merging behavior [https://github.com/data-8/nbgitpuller#merging-behavior]
prior to using the tool in production.

Allow users to create their own conda environments

Sometimes you want users to be able to create their own conda environments.
By default, any environments created in a JupyterHub session will not persist
across sessions. To resolve this, take the following steps:

	Ensure the nb_conda_kernels package is installed in the root
environment (e.g., see Build a custom Docker image with repo2docker)

	Configure Anaconda to install user environments to a folder within $HOME.

Create a file called .condarc in the home folder for all users, and make
sure that the following lines are inside:

```
envs_dirs:



	/home/jovyan/my-conda-envs/







```

The text above will cause Anaconda to install new environments to this
folder, which will persist across sessions.

 Extending your JupyterHub setup
 User Resources

 Previous
 Next

User Resources

Note

For a list of all the options you can configure with your helm
chart, see the Helm Chart Configuration Reference.

User resources include the CPU, RAM, and Storage which JupyterHub provides to
users. Most of these can be controlled via modifications to the Helm Chart.
For information on deploying your modifications to the JupyterHub deployment,
see Applying configuration changes.

Since JupyterHub can serve many different types of users, JupyterHub managers
and administrators must be able to flexibly allocate user resources, like
memory or compute. For example, the Hub may be serving power users with large
resource requirements as well as beginning users with more basic resource
needs. The ability to customize the Hub’s resources to satisfy both user
groups improves the user experience for all Hub users.

Set user memory and CPU guarantees / limits

Each user on your JupyterHub gets a slice of memory and CPU to use. There are
two ways to specify how much users get to use: resource guarantees and
resource limits.

A resource guarantee means that all users will have at least this resource
available at all times, but they may be given more resources if they’re
available. For example, if users are guaranteed 1G of RAM, users can
technically use more than 1G of RAM if these resources aren’t being used by
other users.

A resource limit sets a hard limit on the resources available. In the example
above, if there were a 1G memory limit, it would mean that users could use
no more than 1G of RAM, no matter what other resources are being used on the
machines.

By default, each user is guaranteed 1G of RAM. All users have at least 1G,
but they can technically use more if it is available. You can easily change the
amount of these resources, and whether they are a guarantee or a limit, by
changing your config.yaml file. This is done with the following structure.

singleuser:
 memory:
 limit: 1G
 guarantee: 1G

This sets a memory limit and guarantee of 1G. Kubernetes will make sure that
each user will always have access to 1G of RAM, and requests for more RAM will
fail (your kernel will usually die). You can set the limit to be higher than
the guarantee to allow some users to use larger amounts of RAM for
a very short-term time (e.g. when running a single, short-lived function that
consumes a lot of memory).

Similarly, you can limit CPU as follows:

singleuser:
 cpu:
 limit: .5
 guarantee: .5

This would limit your users to a maximum of .5 of a CPU (so 1/2 of a CPU core), as well as guarantee them that same amount.

Note

Remember to apply the change after changing your config.yaml file!

Modifying user storage type and size

See the User storage in JupyterHub for information on how to modify the type and
size of storage that your users have access to.

Expanding and contracting the size of your cluster

You can easily scale up or down your cluster’s size to meet usage demand or to
save cost when the cluster is not being used. This is particularly useful
when you have predictable spikes in usage. For example, if you are
organizing and running a workshop, resizing a cluster gives you a way
to save cost and prepare JupyterHub before the event. For example:

	One week before the workshop: You can create the cluster, set
everything up, and then resize the cluster to zero nodes to save cost.

	On the day of the workshop: You can scale the cluster up to a suitable
size for the workshop. This workflow also helps you avoid scrambling on
the workshop day to set up the cluster and JupyterHub.

	After the workshop: The cluster can be deleted.

The following sections describe
how to resize the cluster on various cloud platforms.

Google Cloud Platform

Use the resize command and
provide a new cluster size (i.e. number of nodes) as a command line option
--size:

gcloud container clusters resize \
 <YOUR-CLUSTER-NAME> \
 --size <NEW-SIZE> \
 --zone <YOUR-CLUSTER-ZONE>

To display the cluster’s name, zone, or current size, use the command:

gcloud container clusters list

After resizing the cluster, it may take a couple of minutes for the new cluster
size to be reported back as the service is adding or removing nodes. You can
find the true count of currently ‘ready’ nodes using kubectl get node to
report the current Ready/NotReady status of all nodes in the cluster.

 Customizing the User Environment
 User storage in JupyterHub

 Previous
 Next

User storage in JupyterHub

For the purposes of this guide, we’ll describe “storage” as
a “volume” - a location on a disk where a user’s data resides.

Kubernetes handles the creation and allocation of persistent
volumes, under-the-hood it uses the cloud provider’s API to
issue the proper commands. To that extent most of our discussion
around volumes will describe Kubernetes objects.

JupyterHub uses Kubernetes to manage user storage. There are two
primary Kubernetes objects involved in allocating
storage to pods:

	A PersistentVolumeClaim (PVC) specifies what kind of storage is required. Its configuration is specified in your config.yaml file.

	A PersistentVolume (PV) is the actual volume where the user’s data resides. It is created by Kubernetes using details in a PVC.

As Kubernetes objects, they can be queried
with the standard kubectl commands (e.g., kubectl --namespace=<your-namespace> get pvc)

In JupyterHub, each user gets their own PersistentVolumeClaim
object, representing the data attached to their account.
When a new user starts their JupyterHub server, a
PersistentVolumeClaim is created for that user. This claim
tells Kubernetes what kind of storage (e.g., ssd vs. hd) as
well as how much storage is needed. Kubernetes checks to see
whether a PersistentVolume object for that user exists (since
this is a new user, none will exist). If no PV object exists,
then Kubernetes will use the PVC to create a new PV object
for the user.

Now that a PV exists for the user, Kubernetes next must
attach (or “mount”) that PV to the user’s pod (which runs
user code). Once this is accomplished, the user will have
access to their PV within JupyterHub. Note that this all happens
under-the-hood and automatically when a user logs in.

PersistentVolumeClaims and PersistentVolumes are not
deleted unless the PersistentVolumeClaim is explicitly deleted
by the JupyterHub administrator. When a user shuts down their
server, their user pod is deleted and their volume is
detached from the pod, but the PVC and PV objects still exist.
In the future, when the user logs back in, JupyterHub will
detect that the user has a pre-existing PVC and will simply
attach it to their new pod, rather than creating a new PVC.

How can this process break down?

When Kubernetes uses the PVC to create a new user PV, it
is sending a command to the underlying API of whatever cloud
provider Kubernetes is running on. Occasionally, the request
for a specific PV might fail - for example, if your account
has reached the limit in the amount of disk space available.

Another common issue is limits on the number of volumes that
may be simultaneously attached to a node in your cluster. Check
your cloud provider for details on the limits of storage
resources you request.

Note

Some cloud providers have a limited number of disks that can be attached to
each node. Since JupyterHub allocates one disk per user for
persistent storage, this limits the number of users that can be running in
a node at any point of time. If you need users to have
persistent storage, and you end up hitting this limit, you must use
more nodes in order to accommodate the disk for each user. In this
case, we recommend allocating fewer resources per node (e.g. RAM) since
you’ll have fewer users packed onto a single node.

Configuration

Most configuration for storage is done at the cluster level and
is not unique to JupyterHub. However, some bits are, and we will
demonstrate here how to configure those.

Note that new PVCs for pre-existing users will not be
created unless the old ones are destroyed. If you update your
users’ PVC config via config.yaml, then any new users will
have the new PVC created for them, but old users will not.
To force an upgrade of the storage type for old users, you will
need to manually delete their PVC (e.g.
kubectl --namespace=<your-namespace> delete pvc <pvc-name>).
This will delete all of the user’s data so we recommend
backing up their filesystem first if you want to retain their data.

After you delete the user’s PVC, upon their next log-in a new
PVC will be created for them according to your updated PVC
specification.

Type of storage provisioned

A StorageClass [https://kubernetes.io/docs/concepts/storage/storage-classes/] object
is used to determine what kind of PersistentVolumes are provisioned for your
users. Most popular cloud providers have a StorageClass marked as default. You
can find out your default StorageClass by doing:

kubectl get storageclass

and looking for the object with (default) next to its name.

To change the kind of PersistentVolumes provisioned for your users,

	Create a new StorageClass object following the
kubernetes documentation [https://kubernetes.io/docs/concepts/storage/storage-classes/]

	Specify the name of the StorageClass you just created in config.yaml

singleuser:
 storage:
 dynamic:
 storageClass: <storageclass-name>

	Do a helm upgrade

Note that this will only affect new users who are logging in. We recommend
you do this before users start heavily using your cluster.

We will provide examples for popular cloud providers here, but will generally
defer to the Kubernetes documentation.

Google Cloud

On Google Cloud, the default StorageClass will provision
Standard Google Persistent Disk [https://cloud.google.com/compute/docs/disks/#pdspecs]s.
These run on Hard Disks. For more performance, you may want to use SSDs.
To use SSDs, you can create a new StorageClass by first putting the following yaml into a new file. We recommend a descriptive name such
as storageclass.yaml, which we’ll use below:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: jupyterhub-user-ssd
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
 zones: <your-cluster-zone>

Replace <your-cluster-zone> with the Zone in which you created your cluster (you can find
this with gcloud container clusters list).

Next, create this object by running kubectl apply -f storageclass.yaml
from the commandline. The Kubernetes Docs [https://kubernetes.io/docs/concepts/storage/storage-classes/#gce]
have more information on what the various fields mean. The most important field is parameters.type,
which specifies the type of storage you wish to use. The two options are:

	pd-ssd makes StorageClass provision SSDs.

	pd-standard will provision non-SSD disks.

Once you have created this StorageClass, you can configure your JupyterHub’s PVC
template with the following in your config.yaml:

singleuser:
 storage:
 dynamic:
 storageClass: jupyterhub-user-ssd

Note that for storageClass: we use the name that we specified
above in metadata.name.

Size of storage provisioned

You can set the size of storage requested by JupyterHub in the PVC in
your config.yaml.

storage:
 capacity: 2Gi

This will request a 2Gi volume per user. The default requests a 10Gi
volume per user.

We recommend you use the IEC Prefixes [https://physics.nist.gov/cuu/Units/binary.html]
(Ki, Mi, Gi, etc) for specifying how much storage you want. 2Gi (IEC Prefix) is
(2 * 1024 * 1024 * 1024) bytes, while 2G (SI Prefix) is (2 * 1000 * 1000 * 1000) bytes.

Turn off per-user persistent storage

If you do not wish for users to have any persistent storage, it can be
turned off. Edit the config.yaml file and set the storage type to
none:

singleuser:
 storage:
 type: none

Next apply the changes.

After the changes are applied, new users will no longer be allocated a
persistent $HOME directory. Any currently running users will still have
access to their storage until their server is restarted. You might have to
manually delete current users’ PVCs with kubectl to reclaim any cloud
disks that might have allocated. You can get a current list of PVCs with:

kubectl --namespace=<your-namespace> get pvc

You can then delete the PVCs you do not want with:

kubectl --namespace=<your-namespace> delete pvc <pvc-name>

Remember that deleting someone’s PVCs will delete all their data, so do so
with caution!

 User Resources
 User Management

 Previous
 Next

User Management

This section describes management of users and their
permissions on JupyterHub.

Culling user pods

JupyterHub will automatically delete any user pods that have no activity
for a period of time. This helps free up computational resources and keeps
costs down if you are using an autoscaling cluster.
When these users navigate back to your JupyterHub, they will
have to start their server again, and the state of their previous session
(variables they’ve created, any in-memory data, etc)
will be lost. This is known as culling.

Note

In JupyterHub, “inactivity” is defined as no response from the user’s
browser. JupyterHub constantly pings the user’s JupyterHub browser session
to check whether it is open. This means that leaving the computer running
with the JupyterHub window open will not be treated as inactivity.

To disable culling, put the following into config.yaml:

cull:
 enabled: false

By default, JupyterHub will run the culling process every ten minutes
and will cull any user pods that have been inactive for more than one hour.
You can configure this behavior in your config.yaml file with the following
fields:

cull:
 timeout: <max-idle-seconds-before-user-pod-is-deleted>
 every: <number-of-seconds-this-check-is-done>

Note

While JupyterHub automatically runs the culling process, it is not a
replacement for keeping an eye on your cluster to make sure resources
are being used as expected.

Admin Users

JupyterHub has the concept of
admin users [http://jupyterhub.readthedocs.io/en/latest/getting-started/authenticators-users-basics.html#configure-admins-admin-users]
who have special rights. They can start / stop other user’s servers, and
optionally access user’s notebooks. They will see a new Admin button in
their Control Panel which will take them to an Admin Panel where they can
perform all these actions.

You can specify a list of admin users in your config.yaml:

auth:
 admin:
 users:
 - adminuser1
 - adminuser2

By default, admins can access user’s notebooks. If you wish to disable this, use
this in your config.yaml:

auth:
 admin:
 access: false

Authenticating Users

For information on authenticating users in JupyterHub, see
the Authentication guide.

 User storage in JupyterHub
 The JupyterHub Architecture

 Previous
 Next

The JupyterHub Architecture

The JupyterHub Helm Chart manages resources in the cloud using Kubernetes.
There are several moving pieces that, together, handle authenticating users,
pulling a Docker image specified by the administrator, generating the user
pods in which users will work, and connecting users with those pods.

The following diagram gives a high-level overview of the many pieces of
JupyterHub, and how they fit together in this process:

[image: _images/architecture.png]

 User Management
 Debugging Kubernetes

 Previous
 Next

Debugging Kubernetes

Sometimes your JupyterHub deployment doesn’t behave the way you’d expect.
This section provides some tips on debugging and fixing some common problems.

Debugging commands

In order to debug your JupyterHub deployment, you need to be able to inspect
the state of the resources being used. The following are a few common commands
for debugging.

Real world scenario: Let’s say you’ve got a JupyterHub deployed, and a user
tells you that they are experiencing strange behavior. Let’s take a look
at our deployment to figure out what is going on.

Note

For our real world scenario, we’ll assume that our Kubernetes namespace
is called jhub. Your namespace may be called something different

kubectl get pod

To list all pods in your Kubernetes deployment:

kubectl --namespace=jhub get pod

This will output a list of all pods being used in the deployment.

Real world scenario: In our case, we see two pods for the JupyterHub
infrastructure (hub and proxy) as well as one user
pod that was created when somebody logged in to the JupyterHub.

Here’s an example of the output:

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-3311438805-xnfvp 1/1 Running 0 2m
jupyter-choldgraf 0/1 ErrImagePull 0 25s
proxy-1227971824-mn2wd 1/1 Running 0 5h

Here we can see the two JupyterHub pods, as well as a single user pod. Note
that all user pods will begin with jupyter-.

In particular, keep an eye on the STATUS column. If a given
pod contains something other than Running, then something may be wrong.

In this case, we can see that our user’s pod is in the ErrImagePull state.
This generally means that there’s something wrong with the Docker image that
is defined in singleuser in our helm chart config. Let’s dig further…

kubectl describe pod

To see more detail about the state of a specific pod, use the following
command:

kubectl --namespace=jhub describe pod <POD_NAME>

This will output several pieces of information, including configuration and
settings for the pod. The final section you’ll see is a list of recent
events. These can be particularly informative, as often an error will
show up in this section.

Real world scenario: In our case, one of the lines in the events page
displays an error:

$ kubectl --namespace=jhub describe pod jupyter-choldgraf
...
2m 52s 4 kubelet, gke-jhubtest-default-pool-52c36683-jv6r spec.containers{notebook} Warning Failed Failed to pull image "jupyter/scipy-notebook:v0.4": rpc error: code = 2 desc = Error response from daemon: {"message":"manifest for jupyter/scipy-notebook:v0.4 not found"}
...

It seems there is indeed something wrong with the Docker image. Let’s confirm
this by getting another view on the events that have transpired in the pod.

kubectl logs

If you only want to see the latest logs for a pod, use the following command:

kubectl --namespace=jhub logs <POD_NAME>

This will show you the logs from the pod, which often contain useful
information about what is going wrong. Parse these logs
to see if something is generating an error.

Real world scenario: In our case, we get this line back:

$ kubectl --namespace=jhub logs jupyter-choldgraf
Error from server (BadRequest): container "notebook" in pod "jupyter-choldgraf" is waiting to start: trying and failing to pull image

Now we are sure that something is wrong with our Dockerfile. Let’s check
our config.yaml file for the section where we specify the user’s
Docker image. Here we see our problem:

singleuser:
image:
 name: jupyter/scipy-notebook

We haven’t specified a tag for our Docker image! Not specifying a tag
will cause it to default to v0.4, which isn’t what we want and is causing
the pod to fail.

To fix this, let’s add a tag to our config.yaml file:

singleuser:
image:
 name: jupyter/scipy-notebook
 tag: ae885c0a6226

Then run a helm upgrade:

helm upgrade jhub jupyterhub/jupyterhub --version=v0.6 -f config.yaml

where jhub is the helm release name (substitute the release name that you
chose during setup).

Note

Depending on the size of the Docker image, this may take a while to complete.

Right after you run this command, let’s once again list the pods in our
deployment:

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-2653507799-r7wf8 0/1 ContainerCreating 0 31s
hub-3311438805-xnfvp 1/1 Terminating 0 14m
jupyter-choldgraf 0/1 ImagePullBackOff 0 12m
proxy-deployment-1227971824-mn2wd 1/1 Running 0 5h

Here we can see one hub pod being destroyed, and another (based
on the upgraded helm chart) being created. We also see our broken user pod,
which will not be deleted automatically. Let’s manually delete it so a newer
working pod can be started.:

$ kubectl --namespace=jhub delete pod jupyter-choldgraf

Finally, we’ll tell our user to log back in to the JupyterHub. Then let’s
list our running pods once again:

$ kubectl --namespace=jhub get pod
NAME READY STATUS RESTARTS AGE
hub-2653507799-r7wf8 1/1 Running 0 3m
jupyter-choldgraf 1/1 Running 0 18s
proxy-deployment-1227971824-mn2wd 1/1 Running 0 5h

And now we see that we have a running user pod!

Note that many debugging situations are not as straightforward as this one.
It will take some time before you get a feel for the errors that Kubernetes
may throw at you, and how these are tied to your configuration files.

Troubleshooting Examples

The following sections contain some case studies that illustrate some of the
more common bugs / gotchas that you may experience using JupyterHub with
Kubernetes.

Hub fails to start

Symptom: following kubectl get pod, the hub pod is in
Error or CrashLoopBackoff state, or appears to be running but accessing
the website for the JupyterHub returns an error message in the browser).

Investigating: the output of kubectl --namespace=jhub logs
hub... shows something like:

File "/usr/local/lib/python3.5/dist-packages/jupyterhub/proxy.py", line 589, in get_all_routes
 resp = yield self.api_request('', client=client)
tornado.httpclient.HTTPError: HTTP 403: Forbidden

Diagnosis: This is likely because the hub pod cannot
communicate with the proxy pod API, likely because of a problem in the
secretToken that was put in config.yaml.

Fix: Follow these steps:

	Create a secret token:

openssl rand -hex 32

	Add the token to config.yaml like so:

proxy:
 secretToken: '<output of `openssl rand -hex 32`>'

	Redeploy the helm chart:

helm upgrade jhub jupyterhub/jupyterhub -f config.yaml

 The JupyterHub Architecture
 Authentication

 Previous
 Next

Authentication

Authentication allows you to control who has access to your JupyterHub deployment.
There are many options available to you in controlling authentication, many of
which are described below.

Authenticating with OAuth2

JupyterHub’s oauthenticator [https://github.com/jupyterhub/oauthenticator]
has support for enabling your users to authenticate via a third-party OAuth
provider, including GitHub, Google, and CILogon.

Follow the service-specific instructions linked on the
oauthenticator repository [https://github.com/jupyterhub/oauthenticator]
to generate your JupyterHub instance’s OAuth2 client ID and client secret. Then
declare the values in the helm chart (config.yaml).

Here are example configurations for common authentication services. Note
that in each case, you need to get the authentication credential information
before you can configure the helm chart for authentication.

GitHub

GitHub is the largest hosting service for git repositories. It is free to create an account
at GitHub, and relatively straightforward to set up OAuth credentials so that
users can authenticate with their GitHub username/password.

To create OAuth credentials on GitHub, follow these steps:

	Click your profile picture -> settings -> developer settings

	Make sure you’re on the “OAuth Apps” tab, then click “New OAuth App”

	Fill out the forms (you’ll need your hub address) and generate your ID/Secret.

Below is the structure to use in order to authenticate with GitHub.

auth:
 type: github
 github:
 clientId: "y0urg1thubc1ient1d"
 clientSecret: "an0ther1ongs3cretstr1ng"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

Giving access to organizations on GitHub

The configuration above will allow any GitHub user to access your JupyterHub.
You can also restrict access to members of one or more GitHub organizations.
To do so, see the configuration below.

auth:
 type: github
 github:
 ...
 org_whitelist:
 - "SomeOrgName"
 scopes:
 - "read:user"

auth.scopes can take other values as described in the GitHub Oauth scopes
documentation [https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/]
but we recommend read:user as this requires no additional configuration by
GitHub organisations and users.
For example, omitting the scope means members of an organisation must set
their membership to Public [https://help.github.com/articles/publicizing-or-hiding-organization-membership/]
to login, whereas setting it to read:org may require approval of the
application by a GitHub organisation admin.
Please see this issue [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/687] for further
information.

Note

Changing auth.scopes will not change the scope for existing OAuth tokens, you must invalidate them.

Google

Google authentication is used by many universities (it is part of the “G Suite”).
Note that using Google authentication requires your Hub to have a domain name
(it cannot only be accessible via an IP address).
For more information on authenticating with Google oauth, see the Full Example of Google OAuth2.

auth:
 type: google
 google:
 clientId: "yourlongclientidstring.apps.googleusercontent.com"
 clientSecret: "adifferentlongstring"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
 hostedDomain: "youruniversity.edu"
 loginService: "Your University"

CILogon

auth:
 type: cilogon
 github:
 clientId: "y0urc1logonc1ient1d"
 clientSecret: "an0ther1ongs3cretstr1ng"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"

In order to overcome the caveats [https://github.com/jupyterhub/oauthenticator/blob/master/oauthenticator/cilogon.py] of implementing CILogon OAuthAuthenticator for JupyterHub,
i.e. default username_claim of ePPN does not work for all providers, e.g. generic OAuth such as Google, Use c.CILogonOAuthenticator.username_claim = ‘email’ to use email instead of ePPN as the JupyterHub username:

Add to your config.yaml file to inject extra python based configuration that should be in jupyterhub_config.py [https://zero-to-jupyterhub.readthedocs.io/en/latest/reference.html#hub-extraconfig] as below:

hub:
 extraConfig: |
 c.CILogonOAuthenticator.username_claim = 'email'

Globus

Globus Auth is a foundational identity and access management platform service
designed to address unique needs of the science and engineering community.
Globus provides cloud-based services for reliably moving, sharing, publishing
and discovering data, whether your files live on a supercomputer, lab cluster,
tape archive, public cloud, or your own laptop. Start a Globus app
here [https://developers.globus.org/]!

auth:
 type: globus
 globus:
 clientId: "y0urc1logonc1ient1d"
 clientSecret: "an0ther1ongs3cretstr1ng"
 callbackUrl: "https://<your_jupyterhub_host>/hub/oauth_callback"
 identityProvider: "youruniversity.edu"

OpenID Connect

OpenID Connect [https://openid.net/connect] is an identity layer on top of the
OAuth 2.0 protocol, implemented by
various servers and services [https://openid.net/developers/certified/#OPServices].
While OpenID Connect endpoint discovery is not supported by oauthentiator,
you can still configure JupyterHub to authenticate with OpenID Connect providers
by specifying all endpoints in GenericOAuthenticator.

Here’s an example for authenticating against keycloak [http://www.keycloak.org/docs/3.4/securing_apps/index.html#endpoints],
after you configure an OIDC Client [http://www.keycloak.org/docs/3.4/server_admin/index.html#oidc-clients]
and obtain the confidential client credentials.

hub:
 extraEnv:
 OAUTH2_AUTHORIZE_URL: https://${host}/auth/realms/${realm}/protocol/openid-connect/auth
 OAUTH2_TOKEN_URL: https://${host}/auth/realms/${realm}/protocol/openid-connect/token
auth:
 type: custom
 custom:
 className: oauthenticator.generic.GenericOAuthenticator
 config:
 client_id: "y0urc1logonc1ient1d"
 client_secret: "an0ther1ongs3cretstr1ng"
 token_url: https://${host}/auth/realms/${realm}/protocol/openid-connect/token
 userdata_url: https://${host}/auth/realms/${realm}/protocol/openid-connect/userinfo
 userdata_method: GET
 userdata_params: {'state': 'state'}
 username_key: preferred_username

Full Example of Google OAuth2

If your institution is a G Suite customer [https://gsuite.google.com] that
integrates with Google services such as Gmail, Calendar, and Drive, you can
authenticate users to your JupyterHub using Google for authentication.

Note

Google requires that you specify a fully qualified domain name for your
hub rather than an IP address.

	Log in to the Google API Console [https://console.developers.google.com].

	Select a project > Create a project… and set ‘Project name’. This is a
short term that is only displayed in the console. If you have already
created a project you may skip this step.

	Type “Credentials” in the search field at the top and click to access the
Credentials API.

	Click “Create credentials”, then “OAuth client ID”. Choose
“Application type” > “Web application”.

	Enter a name for your JupyterHub instance. You can give it a descriptive
name or set it to be the hub’s hostname.

	Set “Authorized JavaScript origins” to be your hub’s URL.

	Set “Authorized redirect URIs” to be your hub’s URL followed by
“/hub/oauth_callback”. For example, http://{example.com}/hub/oauth_callback.

	When you click “Create”, the console will generate and display a Client ID
and Client Secret. Save these values.

	Type “consent screen” in the search field at the top and click to access the
OAuth consent screen. Here you will customize what your users see when they
login to your JupyterHub instance for the first time. Click Save when you
are done.

	In your helm chart, create a stanza that contains these OAuth fields:

auth:
 type: google
 google:
 clientId: "yourlongclientidstring.apps.googleusercontent.com"
 clientSecret: "adifferentlongstring"
 callbackUrl: "http://<your_jupyterhub_host>/hub/oauth_callback"
 hostedDomain: "youruniversity.edu"
 loginService: "Your University"

The callbackUrl key is set to the authorized redirect URI you specified
earlier. Set hostedDomain to your institution’s domain name. The value of
loginService is a descriptive term for your institution that reminds your
users which account they are using to login.

Authenticating with LDAP

JupyterHub supports LDAP and Active Directory authentication.
Read the ldapauthenticator [https://github.com/jupyterhub/ldapauthenticator]
documentation for a full explanation of the available parameters.

Example LDAP Configuration

auth.ldap.server.address and auth.ldap.dn.templates are required. Other
fields are optional.

auth:
 type: ldap
 ldap:
 server:
 address: ldap.EXAMPLE.org
 dn:
 templates:
 - 'cn={username},ou=edir,ou=people,ou=EXAMPLE-UNIT,o=EXAMPLE'

Example Active Directory Configuration

This example is equivalent to that given in the
ldapauthenticator README [https://github.com/jupyterhub/ldapauthenticator/blob/master/README.md].

auth:
 type: ldap
 ldap:
 server:
 address: ad.EXAMPLE.org
 dn:
 lookup: true
 search:
 filter: '({login_attr}={login})'
 user: 'ldap_search_user_technical_account'
 password: 'secret'
 dnAttribute: 'cn'
 templates:
 - 'uid={username},ou=people,dc=wikimedia,dc=org'
 - 'uid={username},ou=developers,dc=wikimedia,dc=org'
 user:
 searchBase: 'ou=people,dc=wikimedia,dc=org'
 escape: False
 attribute: 'sAMAccountName'
 allowedGroups:
 - 'cn=researcher,ou=groups,dc=wikimedia,dc=org'
 - 'cn=operations,ou=groups,dc=wikimedia,dc=org'

Adding a Whitelist

JupyterHub can be configured to only allow a specified
whitelist [http://jupyterhub.readthedocs.io/en/latest/getting-started/authenticators-users-basics.html#create-a-whitelist-of-users]
of users to login. This is especially useful if you are
using an authenticator with an authentication service open to the general
public, such as GitHub or Google.

You can specify this list of usernames in your config.yaml:

auth:
 whitelist:
 users:
 - user1
 - user2

 Debugging Kubernetes
 Speed and Optimization

 Previous
 Next

Speed and Optimization

This page contains information and guidelines for improving the speed,
stability, and general optimization of your JupyterHub deployment.

Picking a Scheduler Strategy

Kubernetes offers very flexible ways to determine how it distributes pods on
your nodes. The JupyterHub helm chart supports two common configurations, see
below for a brief description of each.

Spread

	Behavior: This spreads user pods across as many nodes as possible.

	Benefits: A single node going down will not affect too many users. If you
do not have explicit memory & cpu limits, this strategy also allows your users
the most efficient use of RAM & CPU.

	Drawbacks: This strategy is less efficient when used with autoscaling.

This is the default strategy. To explicitly specify it, use the following in
your config.yaml:

singleuser:
 schedulerStrategy: spread

Pack

	Behavior: This packs user pods into as few nodes as possible.

	Benefits: This reduces your resource utilization, which is useful in
conjunction with autoscalers.

	Drawbacks: A single node going down might affect more user pods than using
a “spread” strategy (depending on the node).

When you use this strategy, you should specify limits and guarantees for memory
and cpu. This will make your users’ experience more predictable.

To explicitly specify this strategy, use the following in your config.yaml:

singleuser:
 schedulerStrategy: pack

Pre-pulling

Pulling a user’s images to a node forces a user to wait before the user’s server
is started. Sometimes, the wait can be 5 to 10 minutes. Pre-pulling the
images on all the nodes can cut this wait time to a few seconds. Let’s look at
how pre-pulling works.

Hook - image pulling before upgrades

With the pre-pulling hook, which is enabled by default, the user’s container
image is pulled on all nodes whenever a helm install or helm upgrade is
performed. While this causes helm install and helm upgrade to take several
minutes as the update is scheduled after the pulling has completed, the users
waiting time will decrease and become more reliable.

With the default helm upgrade settings, a helm install or helm upgrade will
allow 5 minutes of image pulling before timing out. This wait time is
configurable by passing the --wait <seconds> flag to the helm commands.

We recommend using pre-pulling. For the rare cases where you have a good reason
to disable it, pre-pulling can be disabled. To disable the pre-pulling during
helm install and helm upgrade, you can use the following snippet in your
config.yaml:

prePuller:
 hook:
 enabled: false

Continuous - image pulling for added nodes

Cluster size can change through manual addition of nodes or autoscaling. When a
new node is added to the cluster, the new node does not yet have the user image.
A user using this new node would be forced to wait while the image is pulled
from scratch. Ideally, it would be helpful to pre-pull images when the new node
is added to the cluster.

With the continuous pre-puller enabled (disabled by default), the user’s
container image will be pre-pulled when a new node is added. New nodes can for
example be added manually or by a cluster autoscaler. The continuous
pre-puller uses a
daemonset [https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/]
to force kubernetes to pull the user image on all nodes as soon as a node is
present. The continuous pre-puller uses minimal resources on all nodes and
greatly speeds up the user pod start time.

The continuous pre-puller is disabled by default. To enable it, use the
following snippet in your config.yaml:

prePuller:
 continuous:
 enabled: true

Pre-pulling additional images

By default, the pre-puller only pulls the singleuser image & the networktools
image (if access to cloud metadata is disabled). If you have customizations that
need additional images present on all nodes, you can ask the pre-puller to also
pull an arbitrary number of additional images.

prePuller:
 extraImages:
 ubuntu-xenial:
 name: ubuntu
 tag: 16.04
 policy: IfNotPresent

This snippet will pre-pull the ubuntu:16.04 image on all nodes, for example.
You can pre-pull any number of images.

 Authentication
 Security

 Previous
 Next

Security

The information in this document focuses primarily on cloud based deployments. For on-premise deployments, additional security work that is specific to your installation method would also be required. Note that your specific installation’s security needs might be more or less stringent than what we can offer you here.

Brad Geesamen gave a wonderful talk titled Hacking and Hardening Kubernetes by Example [https://kccncna17.sched.com/event/CU6z/hacking-and-hardening-kubernetes-clusters-by-example-i-brad-geesaman-symantec] at Kubecon NA 2017. You can watch the talk [https://www.youtube.com/watch?v=vTgQLzeBfRU] or read the slides [https://schd.ws/hosted_files/kccncna17/47/Hacking%20and%20Hardening%20Kubernetes%20By%20Example%20v1.pdf]. Highly recommended that you do so to understand the security issues you are up against when using Kubernetes to run JupyterHub.

Reporting a security issue

If you find a security vulnerability in JupyterHub, either a failure of the
code to properly implement the model described here, or a failure of the
model itself, please report it to security@ipython.org.

If you prefer to encrypt your security reports, you can use
this PGP public key [https://jupyter-notebook.readthedocs.io/en/stable/_downloads/ipython_security.asc].

HTTPS

This section describes how to enable HTTPS on your JupyterHub. The easiest way to do so is by using Let’s Encrypt [https://letsencrypt.org/], though we’ll also cover how to set up your own HTTPS credentials. For more information
on HTTPS security see the certificates section of this blog post [https://blog.hartleybrody.com/https-certificates/].

Set up your domain

	Buy a domain name from a registrar. Pick whichever one you want.

	Create an A record from the domain you want to use, pointing to the EXTERNAL-IP of the proxy-public service. The exact way to do this will depend on the DNS provider that you’re using.

	Wait for the change to propagate. Propagation can take several minutes to several hours. Wait until you can type in the name of the domain you bought and it shows you the JupyterHub landing page.

It is important that you wait - prematurely going to the next step might cause problems!

Set up automatic HTTPS

JupyterHub uses Let’s Encrypt [https://letsencrypt.org/] to automatically create
HTTPS certificates for your deployment. This will cause your HTTPS certificate
to automatically renew every few months. To enable this, make the following
changes to your config.yaml file:

	Specify the two bits of information that we need to automatically provision
HTTPS certificates - your domain name & a contact email address.

proxy:
 https:
 hosts:
 - <your-domain-name>
 letsencrypt:
 contactEmail: <your-email-address>

	Apply the config changes by running helm upgrade ...

	Wait for about a minute, now your hub should be HTTPS enabled!

Set up manual HTTPS

If you have your own HTTPS certificates & want to use those instead of the automatically provisioned Let’s Encrypt ones, that’s also possible. Note that this is considered an advanced option, so we recommend not doing it unless you have good reasons.

	Add your domain name & HTTPS certificate info to your config.yaml

proxy:
 https:
 hosts:
 - <your-domain-name>
 type: manual
 manual:
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 ...
 -----END RSA PRIVATE KEY-----
 cert: |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

	Apply the config changes by running helm upgrade ….

	Wait for about a minute, now your hub should be HTTPS enabled!

Off-loading SSL to a Load Balancer

In some environments with a trusted network, you may want to terminate SSL at a
load balancer. If https is enabled, and proxy.https.type is set to offload,
the HTTP and HTTPS front ends target the HTTP port from JupyterHub.

The HTTPS listener on the load balancer will need to be configured based on the
provider. If you’re using AWS and a certificate provided by their certificate
manager, your config.yml might look something like:

proxy:
 https:
 enabled: true
 type: offload
 service:
 annotations:
 # Certificate ARN
 service.beta.kubernetes.io/aws-load-balancer-ssl-cert: "arn:aws:acm:us-east-1:1234567891011:certificate/uuid"
 # The protocol to use on the backend, we use TCP since we're using websockets
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: "tcp"
 # Which ports should use SSL
 service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "https"
 service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: '3600'

Annotation options will vary by provider. Kubernetes provides a list for
popular cloud providers in their
documentation [https://kubernetes.io/docs/concepts/cluster-administration/cloud-providers/].

Confirm that your domain is running HTTPS

There are many ways to confirm that a domain is running trusted HTTPS
certificates. One options is to use the Qualys SSL Labs [https://ssllabs.com]
security report generator. Use the following URL structure to test your domain:

```
http://ssllabs.com/ssltest/analyze.html?d=<YOUR-DOMAIN>
```


Secure access to Helm

In its default configuration, helm pretty much allows root access to all other
pods running in your cluster. See this Bitnami Helm security article [https://engineering.bitnami.com/articles/helm-security.html]
for more information. As a consequence, the default allows all users in your cluster to pretty much have root access to your whole cluster!

You can mitigate this by limiting public access to the Tiller API. To do so, use the following command:

kubectl --namespace=kube-system patch deployment tiller-deploy --type=json --patch='[{"op": "add", "path": "/spec/template/spec/containers/0/command", "value": ["/tiller", "--listen=localhost:44134"]}]'

This limit shouldn’t affect helm functionality in any form.

Audit Cloud Metadata server access

Most cloud providers have a static IP you can hit from any of the compute nodes, including the user pod, to get metadata about the cloud. This metadata can contain very sensitive info, and this metadata, in the wrong hands, can allow attackers to take full control of your cluster and cloud resources. It is critical to secure the metadata service. We block access to this IP by default (as of v0.6), so you are protected from this!

The slides beginning at Slide 38 [https://schd.ws/hosted_files/kccncna17/d8/Hacking%20and%20Hardening%20Kubernetes%20By%20Example%20v2.pdf] provides more information on the dangers presented by this attack.

If you need to enable access to the metadata server for some reason, you can do the following in config.yaml:

singleuser:
 cloudMetadata:
 enabled: true

Delete the Kubernetes Dashboard

The Kubernetes Dashboard [https://github.com/kubernetes/dashboard] gets created by default in many installations. Although the Dashboard contains useful information, the Dashboard also poses a security risk. We recommend deleting it and not using it for the time being until the Dashboard becomes properly securable.

You can mitigate this by deleting the Kubernetes Dashboard deployment from your cluster. This can be most likely performed with:

kubectl --namespace=kube-system delete deployment kubernetes-dashboard

In older clusters, you might have to do:

kubectl --namespace=kube-system delete rc kubernetes-dashboard

Use Role Based Access Control (RBAC)

Kubernetes supports, and often requires, using Role Based Access Control (RBAC) [https://kubernetes.io/docs/admin/authorization/rbac/]
to secure which pods / users can perform what kinds of actions on the cluster. RBAC rules can be set to provide users with minimal necessary access based on their administrative needs.

It is critical to understand that if RBAC is disabled, all pods are given root equivalent permission on the Kubernetes cluster and all the nodes in it. This opens up very bad vulnerabilites for your security.

As of the Helm chart v0.5 used with JupyterHub and BinderHub, the helm chart can natively work with RBAC enabled clusters. To provide sensible security defaults, we ship appropriate minimal RBAC rules for the various components we use. We highly recommend using these minimal or more restrictive RBAC rules.

If you want to disable the RBAC rules, for whatever reason, you can do so with the following snippet in your config.yaml:

rbac:
 enabled: false

We strongly discourage disabling the RBAC rules and remind you that this
action will open up security vulnerabilities. However, some cloud providers
(particularly Azure AKS)
do not support RBAC [https://github.com/Azure/AKS/issues/67] right now,
and you might have to disable RBAC with this config to run on Azure.

Kubernetes API Access

Allowing direct user access to the Kubernetes API can be dangerous. It allows
users to grant themselves more privileges, access other users’ content without
permission, run (unprofitable) bitcoin mining operations & various other
not-legitimate activities. By default, we do not allow access to the service
account credentials [https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/] needed
to access the kubernetes API from user servers for this reason.

If you want to (carefully!) give access to the Kubernetes API to your users, you
can do so with the following in your config.yaml:

singleuser:
 serviceAccountName: <service-account-name>

You can either manually create a service account for use by your users and
specify the name of that here (recommended) or use default to give them access
to the default service account for the namespace. You should ideally also
(manually) set up RBAC [https://kubernetes.io/docs/admin/authorization/rbac/]
rules for this service account to specify what permissions users will have.

This is a sensitive security issue (similar to writing sudo rules in a
traditional computing environment), so be very careful.

There’s ongoing work on making this easier!

Kubernetes Network Policies

Kubernetes has optional support for network
policies [https://kubernetes.io/docs/concepts/services-networking/network-policies/]
which lets you restrict how pods can communicate with each other and the outside
world. This can provide additional security within JupyterHub, and can also be
used to limit network access for users of JupyterHub.

By default, the JupyterHub helm chart disables network policies.

Enabling network policies

Important: If you decide to enable network policies, you should be aware
that a Kubernetes cluster may have partial, full, or no support for network
policies. Kubernetes will silently ignore policies that aren’t supported.
Please use caution if enabling network policies and verify the policies
behave as expected, especially if you rely on them to restrict what users can
access.

You can enable network policies in your config.yaml:

hub:
 networkPolicy:
 enabled: true
proxy:
 networkPolicy:
 enabled: true
singleuser:
 networkPolicy:
 enabled: true

The default singleuser policy allows all outbound network traffic, meaning
JupyterHub users are able to connect to all resources inside and outside your
network. To restrict outbound traffic to DNS, HTTP and HTTPS:

singleuser:
 networkPolicy:
 enabled: true
 egress:
 - ports:
 - port: 53
 protocol: UDP
 - ports:
 - port: 80
 protocol: TCP
 - ports:
 - port: 443
 protocol: TCP

See the Kubernetes
documentation [https://kubernetes.io/docs/concepts/services-networking/network-policies/]
for further information on defining policies.

 Speed and Optimization
 Upgrading your JupyterHub Kubernetes deployment

 Previous
 Next

Upgrading your JupyterHub Kubernetes deployment

This page covers best-practices in upgrading your JupyterHub deployment via updates
to the Helm Chart.

Upgrading from one version of the Helm Chart to the
next should be as seamless as possible, and generally shouldn’t require major
changes to your deployment. Check the CHANGELOG [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md]
for each release to find out if there are any breaking changes in the newest version.

For additional help, feel free to reach out to us on gitter [http://gitter.im/jupyterhub/jupyterhub]
or the mailing list [https://groups.google.com/forum/#!forum/jupyter]!

Major helm-chart upgrades

These steps are critical before performing a major upgrade.

	Always backup your database!

	Review the CHANGELOG [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md] for incompatible changes and upgrade instructions.

	Update your configuration accordingly.

	User servers may need be stopped prior to the upgrade,
or restarted after it.

	If you are planning an upgrade of a critical major installation,
we recommend you test the upgrade out on a staging cluster first
before applying it to production.

v0.5 to v0.6

See the CHANGELOG [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md#06---ellyse-perry---2017-01-29].

v0.4 to v0.5

Release 0.5 contains a major JupyterHub version bump (from 0.7.2 to 0.8).
Since it is a major upgrade of JupyterHub that changes how authentication is
implemented, user servers must be stopped during the upgrade.
The database schema has also changed, so a database upgrade must be performed.

See the documentation for v0.5 for the upgrade process [https://zero-to-jupyterhub.readthedocs.io/en/v0.5-doc/upgrading.html]
as well as the CHANGELOG [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/blob/master/CHANGELOG.md#05---hamid-hassan---2017-12-05]
for this release for more information about changes.

Subtopics

This section covers upgrade information specific to the following:

	helm upgrade command

	Databases

	RBAC (Role Based Access Control)

	Custom Docker images

helm upgrade command

After modifying your config.yaml file according to the CHANGELOG, you will need
<YOUR-HELM-RELEASE-NAME> to run the upgrade commands. To find <YOUR-RELEASE-NAME>, run:

helm list

Make sure to test the upgrade on a staging environment before doing the upgrade on
a production system!

To run the upgrade:

helm upgrade <YOUR-HELM-RELEASE-NAME> jupyterhub/jupyterhub --version=<RELEASE-VERSION> -f config.yaml

For example, to upgrade to v0.6, enter and substituting <YOUR-HELM-RELEASE-NAME> and version v0.6:

helm upgrade <YOUR-HELM-RELEASE-NAME> jupyterhub/jupyterhub --version=v0.6 -f config.yaml

Database

This release contains a major JupyterHub version bump (from 0.7.2 to 0.8). If
you are using the default database provider (SQLite), then the required db upgrades
will be performed automatically when you do a helm upgrade.

Default (SQLite): The database upgrade will be performed automatically when you
perform the upgrade

MySQL / PostgreSQL: You will execute the following steps, which includes a manual update of your database:

	Make a full backup of your database, just in case things go bad.

	Make sure that the database user used by JupyterHub to connect to your database
can perform schema migrations like adding new tables, altering tables, etc.

	In your config.yaml, add the following config:

hub:
 db:
 upgrade: true

	Do a helm upgrade. This should perform the database upgrade needed.

	Remove the lines added in step 3, and do another helm upgrade.

Role based access control [http://zero-to-jupyterhub.readthedocs.io/en/latest/security.html#role-based-access-control-rbac]

RBAC [https://kubernetes.io/docs/admin/authorization/rbac/] is the user security model
in Kubernetes that gives applications only as much access they need to the kubernetes
API and not more. Prior to this, applications were all running with the equivalent
of root on your Kubernetes cluster. This release adds appropriate roles for the
various components of JupyterHub, for much better ability to secure clusters.

RBAC is turned on by default. But, if your cluster is older than 1.8, or you have RBAC
enforcement turned off, you might want to explicitly disable it. You can do so by adding
the following snippet to your config.yaml:

rbac:
 enabled: false

This is especially true if you get an error like:

Error: the server rejected our request for an unknown reason (get clusterrolebindings.rbac.authorization.k8s.io)

when doing the upgrade!

Custom Docker Images: JupyterHub version match

If you are using a custom built image, make sure that the version of the
JupyterHub package installed in it is now 0.8.1. It needs to be 0.8.1 for it to work with
v0.6 of the helm chart.

For example, if you are using pip to install JupyterHub in your custom Docker Image,
you would use:

RUN pip install --no-cache-dir jupyterhub==0.8.1

Troubleshooting

If the upgrade is failing on a test system or a system that does not serve users, you can try
deleting the helm chart using:

helm delete <YOUR-HELM-RELEASE-NAME> --purge

helm list may be used to find <YOUR-HELM-RELEASE-NAME>.

 Security
 FAQ

 Previous
 Next

FAQ

This section contains frequently asked questions about the JupyterHub deployment.
For information on debugging Kubernetes, see Debugging Kubernetes.

I thought I had deleted my cloud resources, but they still show up. Why?

You probably deleted the specific nodes, but not the kubernetes cluster that
was controlling those nodes. Kubernetes is designed to make sure that a
specific set of resources is available at all times. This means that if you
only delete the nodes, but not the kubernetes instance, then it will detect
the loss of computers and will create two new nodes to compensate.

How does billing for this work?

JupyterHub isn’t handling any of the billing for your usage. That’s done
through whatever cloud service you’re using. For considerations about
managing cost with JupyterHub, see Appendix: Projecting deployment costs.

 Upgrading your JupyterHub Kubernetes deployment
 Advanced Topics

 Previous
 Next

Advanced Topics

This page contains a grab bag of various useful topics that don’t have an easy
home elsewhere:

	Ingress

	Arbitrary extra code and configuration in jupyterhub_config.py

Most people setting up JupyterHubs on popular public clouds should not have
to use any of this information, but these topics are essential for more complex
installations.

Ingress

If you are using a Kubernetes Cluster that does not provide public IPs for
services directly, you need to use
an ingress [https://kubernetes.io/docs/concepts/services-networking/ingress/]
to get traffic into your JupyterHub. This varies wildly
based on how your cluster was set up, which is why this is in the ‘Advanced’ section.

You can enable the required ingress object with the following in your
config.yaml

ingress:
 enabled: true
 hosts:
 - <hostname>

You can specify multiple hosts that should be routed to the hub by listing them
under ingress.hosts.

Note that you need to install and configure an
Ingress Controller [https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers]
for the ingress object to work.

We recommend the community-maintained nginx ingress [https://github.com/kubernetes/charts/tree/master/stable/nginx-ingress]
controller, kubernetes/ingress-nginx [https://github.com/kubernetes/ingress-nginx].
Note that Nginx maintains two additional ingress controllers.
For most use cases, we recommend the community maintained kubernetes/ingress-nginx since that
is the ingress controller that the development team has the most experience using.

Ingress and Automatic HTTPS with kube-lego & Let’s Encrypt

When using an ingress object, the default automatic HTTPS support does not work.
To have automatic fetch and renewal of HTTPS certificates, you must set it up
yourself.

Here’s a method that uses kube-lego [https://github.com/jetstack/kube-lego]
to automatically fetch and renew HTTPS certificates from Let’s Encrypt [https://letsencrypt.org/].
This approach with kube-lego and Let’s Encrypt currently only works with two ingress controllers:
the community-maintained kubernetes/ingress-nginx [https://github.com/kubernetes/ingress-nginx]
and google cloud’s ingress controller.

	Make sure that DNS is properly set up (configuration depends on the ingress
controller you are using and how your cluster was set up). Accessing
<hostname> from a browser should route traffic to the hub.

	Install & configure kube-lego using the
kube-lego helm-chart [https://github.com/kubernetes/charts/tree/master/stable/kube-lego].
Remember to change config.LEGO_EMAIL and config.LEGO_URL at the least.

	Add an annotation + TLS config to the ingress so kube-lego knows to get certificates for
it:

ingress:
 annotations:
 kubernetes.io/tls-acme: "true"
 tls:
 - hosts:
 - <hostname>
 secretName: kubelego-tls-jupyterhub

This should provision a certificate, and keep renewing it whenever it gets close
to expiry!

Arbitrary extra code and configuration in jupyterhub_config.py

Sometimes the various options exposed via the helm-chart’s values.yaml is not
enough, and you need to insert arbitrary extra code / config into
jupyterhub_config.py. This is a valuable escape hatch for both prototyping new
features that are not yet present in the helm-chart, and also for
installation-specific customization that is not suited for upstreaming.

There are four properties you can set in your config.yaml to do this.

hub.extraConfig

The value specified for hub.extraConfig is evaluated as python code at the end
of jupyterhub_config.py. You can do anything here since it is arbitrary Python
Code. Some examples of things you can do:

	Override various methods in the Spawner / Authenticator by subclassing them.
For example, you can use this to pass authentication credentials for the user
(such as GitHub OAuth tokens) to the environment. See
the JupyterHub docs [http://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html#authentication-state] for
an example.

	Specify traitlets that take callables as values, allowing dynamic per-user
configuration.

	Set traitlets for JupyterHub / Spawner / Authenticator that are not currently
supported in the helm chart

Unfortunately, you have to write your python in your YAML file. There’s no way
to include a file in config.yaml.

You can specify hub.extraConfig as a raw string (remember to use the | for multi-line
YAML strings):

hub:
 extraConfig: |
 import time
 c.Spawner.environment += {
 "CURRENT_TIME": str(time.time())
 }

You can also specify hub.extraConfig as a dictionary, if you want to logically
split your customizations. The code will be evaluated in alphabetical sorted
order of the key.

hub:
 extraConfig:
 00-first-config: |
 # some code
 10-second-config: |
 # some other code

hub.extraConfigMap

This property takes a dictionary of values that are then made available for code
in hub.extraConfig to read using a z2jh.get_config function. You can use this to
easily separate your code (which goes in hub.extraConfig) from your config
(which should go here).

For example, if you use the following snippet in your config.yaml file:

hub:
 extraConfigMap:
 myString: Hello!
 myList:
 - Item1
 - Item2
 myDict:
 key: value
 myLongString: |
 Line1
 Line2

In your hub.extraConfig,

	z2jh.get_config('custom.myString') will return a string "Hello!"

	z2jh.get_config('custom.myList') will return a list ["Item1", "Item2"]

	z2jh.get_config('custom.myDict') will return a dict {"key": "value"}

	z2jh.get_config('custom.myLongString') will return a string "Line1\nLine2"

	z2jh.get_config('custom.nonExistent') will return None (since you didn’t
specify any value for nonExistent)

	z2jh.get_config('custom.myDefault', True) will return True, since that is
specified as the second parameter (default)

You need to have a import z2jh at the top of your extraConfig for
z2jh.get_config() to work.

Note that the keys in hub.extraConfigMap must be alpha numeric strings
starting with a character. Dashes and Underscores are not allowed.

hub.extraEnv

This property takes a dictionary that is set as environment variables in the hub
container. You can use this to either pass in additional config to code in your
hub.extraConfig or set some hub parameters that are not settable by other means.

hub.extraContainers

A list of extra containers that are bundled alongside the hub container in the
same pod. This is a
common pattern [http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html] in
kubernetes that as a long list of cool use cases. Some example use cases are:

	Database Proxies, which are sometimes required for the hub to talk to its
configured database
(in Google Cloud [https://cloud.google.com/sql/docs/mysql/sql-proxy]) for example

	Servers / other daemons that are used by code in your hub.customConfig

The items in this list must be valid kubernetes
container specifications [https://v1-8.docs.kubernetes.io/docs/api-reference/v1.8/#container-v1-core].

Picking a Scheduler Strategy

Kubernetes offers very flexible ways to determine how it distributes pods on
your nodes. The JupyterHub helm chart supports two common configurations, see
below for a brief description of each.

Spread

	Behavior: This spreads user pods across as many nodes as possible.

	Benefits: A single node going down will not affect too many users. If you do not have explicit memory & cpu
limits, this strategy also allows your users the most efficient use of RAM & CPU.

	Drawbacks: This strategy is less efficient when used with autoscaling.

This is the default strategy. To explicitly specify it, use the following in your
config.yaml:

singleuser:
 schedulerStrategy: spread

Pack

	Behavior: This packs user pods into as few nodes as possible.

	Benefits: This reduces your resource utilization, which is useful in conjunction with autoscalers.

	Drawbacks: A single node going down might affect more user pods than using
a “spread” strategy (depending on the node).

When you use this strategy, you should specify limits and guarantees for memory
and cpu. This will make your users’ experience more predictable.

To explicitly specify this strategy, use the following in your config.yaml:

singleuser:
 schedulerStrategy: pack

Pre-pulling Images for Faster Startup

Pulling and building a user’s images forces a user to wait before the user’s
server is started. Sometimes, the wait can be 5 to 10 minutes. Pre-pulling
the images on all the nodes can cut this wait time to a few seconds. Let’s look
at how pre-pulling works.

Pre-pulling basics

With pre-pulling, which is enabled by default, the user’s container image
is pulled on all nodes whenever a helm install or helm upgrade is performed.
While this causes helm install and helm upgrade to take several minutes,
this time makes the user startup experience faster and more pleasant.

With the default pre-pulling setting, a helm install or helm upgrade
will cause the system to wait for 5 minutes to begin pulling the images before
timing out. This wait time is configurable by passing the --wait <seconds>
flag to the helm commands.

We recommend using pre-pulling. For the rare cases where you have a good reason
to disable it, pre-pulling can be disabled. To disable the pre-pulling during
helm install and helm upgrade, you can use the following snippet in
your config.yaml:

prePuller:
 hook:
 enabled: false

Pre-pulling and changes in cluster size

Cluster size can change through manual addition of nodes or autoscaling. When a
new node is added to the cluster, the new node does not yet have the user image.
A user using this new node would be forced to wait while the image is pulled
from scratch. Ideally, it would be helpful to pre-pull images when the new node
is added to the cluster.

By enabling the continuous pre-puller (default state is disabled), the user
image will be pre-pulled when adding a new node. When enabled, the
continuous pre-puller runs as a daemonset [https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/]
to force kubernetes to pull the user image on all nodes as soon as a node is
present. The continuous pre-puller uses minimal resources on all nodes and
greatly speeds up the user pod start time.

The continuous pre-puller is disabled by default. To enable it, use the
following snippet in your config.yaml:

prePuller:
 continuous:
 enabled: true

Pre-pulling additional images

By default, the pre-puller only pulls the singleuser image & the networktools image (if
access to cloud metadata is disabled). If you have customizations that need additional
images present on all nodes, you can ask the pre-puller to also pull an arbitrary number
of additional images.

prePuller:
 extraImages:
 ubuntu-xenial:
 name: ubuntu
 tag: 16.04
 policy: IfNotPresent

This snippet will pre-pull the ubuntu:16.04 image on all nodes, for example. You can
pre-pull any number of images.

 FAQ
 Appendix: Projecting deployment costs

 Previous
 Next

Appendix: Projecting deployment costs

Important

Clarification on cost projections

As a non-profit research project, Project Jupyter does not offer,
recommend, or sell cloud deployment services for JupyterHub.

The information in this section is offered as guidance as requested
by our users. We caution that costs can vary widely based
on providers selected and your use cases.

Cost calculators for cloud providers

Below are several links to cost estimators for cloud providers:

	Google Cloud Platform cost calculator [https://cloud.google.com/products/calculator/]

	Amazon AWS cost calculator [https://calculator.s3.amazonaws.com/index.html]

	Microsoft Azure cost claculator [https://azure.microsoft.com/en-us/pricing/calculator/]

Factors influencing costs

Cost estimates depend highly on your deployment setup. Several factors that
significantly influence cost estimates, include:

	Computational resources provided to users

	Number of users

	Usage patterns of users

Computational Resources

Memory (RAM) makes up the largest part of a cost estimate. More RAM means
that your users will be able to work with larger datasets with more
flexibility, but it can also be expensive.

Persistent storage for users, if needed, is another element that will impact
the cost estimate. If users don’t have persistent storage, then disks will be
wiped after users finish their sessions. None of their changes will be saved.
This requires significantly fewer storage resources, and also results in faster
load times.

For an indicator of how costs scale with computational resources, see the
Google Cloud pricing page [https://cloud.google.com/compute/pricing].

Users

The number of users has a direct relationship to cost estimates. Since a
deployment may support different types of users (i.e. researchers, students,
instructors) with varying hardware and storage needs, take into account both the
type of users and the number per type.

User usage patterns

Another important factor is what usage pattern your users will have. Will they
all use the JupyterHub at once, such as during a large class workshop?
will users use JupyterHub at different times of day?

The usage patterns and peak load on the system have important implications for
the resources you need to provide. In the future JupyterHub will have
auto-scaling functionality, but currently it does not. This means that you need
to provision resources for the maximum expected number of users at one time.

Interactive Cost Estimator (rough estimate)

This small notebook may help you to make an initial planning estimate of costs
for your JupyterHub instance.

To use the estimator, the button below will take you to an interactive
notebook served with Binder [https://mybinder.org]. Run the cells and
you’ll be able to choose the computational requirements you have, as well as
draw a pattern of usage you expect over time. It will estimate the costs for
you.

Warning

The cost estimator is a very rough estimate. It is based on Google Cloud
Engine instances served from Oregon. Costs will vary based on your
location / provider, and will be highly variable if you implement any kind
of auto-scaling. Treat it as an order-of-magnitude estimate, not a hard rule.

Launch the Cost Estimator

Examples

Here are a few examples that describe different use cases and the amount of
resources used by a particular JupyterHub implementation. There are many
factors that go into these estimates, and you should expect that your actual
costs may vary significantly under other conditions.

Data 8

The Data 8 course at UC Berkeley used a JupyterHub to coordinate all course
material and to provide a platform where students would run their code. This
consisted of many hundreds of students, who had minimal requirements in terms
of CPU and memory usage. Ryan Lovett put together a short Jupyter notebook
estimating the cost for computational resources [https://github.com/data-8/jupyterhub-k8s/blob/master/docs/cost-estimation/gce_budgeting.ipynb] depending on the student
needs.

 Advanced Topics
 Community-authored documentation

 Previous
 Next

Community-authored documentation

This page contains links and references to other material in the JupyterHub
ecosystem. It may include other guides, examples of JupyterHub deployments,
or posts from the community.

If you have a suggestion for something to add to this page, please
open an issue [https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues].

Links to blog posts

Links to community project repos

 Appendix: Projecting deployment costs
 Zero to JupyterHub Gallery of Deployments

 Previous
 Next

Zero to JupyterHub Gallery of Deployments

This is a community maintained list of organizations / people using the Zero to
JupyterHub guide / helm-chart to maintain their JupyterHub. Send us a Pull
Request to add yourself to this alphabetically sorted list!

	Data Science Education Program’s DataHub at University of California, Berkeley

	MyBinder.org [https://mybinder.org]

	PAWS [https://www.mediawiki.org/wiki/PAWS] at Wikimedia Cloud Services [https://www.mediawiki.org/wiki/Wikimedia_Cloud_Services_team]

 Community-authored documentation
 Tips and command snippets

 Previous
 Next

Tips and command snippets

This is a page to collect a few particularly useful patterns and snippets
that help you interact with your Kubernetes cluster and JupyterHub.
If there’s something that you think is generic enough (and not obvious enough)
to be added to this page, please feel free to make a PR!

kubectl autocompletion

Kubernetes has a helper script that allows you to auto-complete commands
and references to objects when using kubectl. This lets you
TAB-complete and saves a lot of time.

Here are the instructions to install kubectl auto-completion [https://kubernetes.io/docs/tasks/tools/install-kubectl/#enabling-shell-autocompletion].

helm autocompletion

Helm also has an auto-completion script that lets you TAB-complete
your commands when using Helm.

Here are the instructions to install helm auto-completion [https://docs.helm.sh/helm/#helm-completion].

Managing kubectl contexts

Oftentimes people manage multiple Kubernetes deployments at the same time.
kubectl handles this with the idea of “contexts”, which specify which
kubernetes deployment you are referring to when you type kubectl get XXX.

To see a list of contexts currently available to you, use the following
command:

kubectl config get-contexts

This will list all of your Kubernetes contexts. You can select a particular
context by entering:

kubectl config use-context <CONTEXT-NAME>

Specifying a default namespace for a context

If you grow tired of typing namespace=XXX each time you type a kubernetes
command, here’s a snippet that will allow you set a default namespace for
a given Kubernetes context:

kubectl config set-context $(kubectl config current-context) \
 --namespace=<YOUR-NAMESPACE>

The above command will only apply to the currently active context, and will
allow you to skip the --namespace= part of your commands for this context.

Using labels and selectors with kubectl

Sometimes it’s useful to select an entire class of Kubernetes objects rather
than referring to them by their name. You can attach an arbitrary set of
labels to a Kubernetes object, and can then refer to those labels when
searching with kubectl.

To search based on a label value, use the -l or --selector= keyword
arguments. For example, JupyterHub creates a specific subset of labels for all
user pods. You can search for all user pods with the following label query:

kubectl --namespace=<YOUR-NAMESPACE> get pod \
 -l "component=singleuser-server"

For more information, see the Kubernetes labels and selectors page [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/].

Asking for a more verbose or structured output

Sometimes the information that’s in the default output for kubectl get <XXX>
is not enough for your needs, or isn’t structured the way you’d like. We
recommend looking into the different kubernetes output options, which can be
modified like so:

kubectl --namespace=<NAMESPACE> get pod -o <json|yaml|wide|name...>

You can find more information on what kinds of output you can generate at
the kubectl information page [https://kubernetes.io/docs/reference/kubectl/overview/].
(click and search for the text “Output Options”)

 Zero to JupyterHub Gallery of Deployments
 Helm Chart Configuration Reference

 Previous
 Next

Helm Chart Configuration Reference

The JupyterHub helm chart [https://github.com/jupyterhub/zero-to-jupyterhub-k8s] is configurable so that you can customize your JupyterHub setup however you’d like. You can extend user resources, build off of different Docker images, manage security and authentication, and more.

Below is a description of the fields that are exposed with the JupyterHub helm chart.
For more guided information about some specific things you can do with
modifications to the helm chart, see the extending jupyterhub
and user environment pages.

proxy

proxy.secretToken

A 64-byte cryptographically secure randomly generated string used to secure communications
between the hub and the configurable-http-proxy.

This must be generated with openssl rand -hex 32.

Changing this value will cause the proxy and hub pods to restart. It is good security
practice to rotate these values over time. If this secret leaks, immediately change
it to something else, or user data can be compromised

hub

hub.extraConfig

Arbitrary extra python based configuration that should be in jupyterhub_config.py.

This is the escape hatch - if you want to configure JupyterHub to do something specific
that is not present here as an option, you can just write the raw Python to do it here.

Non-exhaustive examples of things you can do here:

	Subclass authenticator / spawner to do a custom thing

	Dynamically launch different images for different sets of images

	Inject an auth token from GitHub authenticator into user pod

	Anything else you can think of!

Since this is usually a multi-line string, you want to format it using YAML’s
| operator [http://www.yaml.org/spec/1.2/spec.html#id2795688].

For example:

hub:
 extraConfig: |
 c.JupyterHub.something = 'something'
 c.Spawner.somethingelse = 'something else'

No validation of this python is performed! If you make a mistake here, it will probably
manifest as either the hub pod going into Error or CrashLoopBackoff states, or in
some special cases, the hub running but… just doing very random things. Be careful!

hub.image

Set custom image name / tag for the hub pod.

Use this to customize which hub image is used. Note that you must use a version of
the hub image that was bundled with this particular version of the helm-chart - using
other images might not work.

hub.image.tag

The tag of the image to pull.

This is the value after the : in your full image name.

hub.image.name

Name of the image, without the tag.

Examples:

	yuvipanda/wikimedia-hub

	gcr.io/my-project/my-hub

hub.imagePullPolicy

Set the imagePullPolicy on the hub pod.

See the kubernetes docs [https://kubernetes.io/docs/concepts/containers/images/#updating-images]
for more info on what the values mean.

hub.cookieSecret

A 64-byte cryptographically secure randomly generated string used to sign values of
secure cookies set by the hub. If unset, jupyterhub will generate one on startup and
save it in the file jupyterhub_cookie_secret in the /srv/jupyterhub directory of
the hub container. Value set here will override the value in jupyterhub_cookie_secret.

You do not need to set this at all if you are using the default configuration for
storing databases - sqlite on a persistent volume (with hub.db.type set to the
default sqlite-pvc). If you are using an external database, then you must set this
value explicitly - or your users will keep getting logged out each time the hub pod
restarts.

This must be generated with openssl rand -hex 32.

Changing this value will all user logins to be invalidated. If this secret leaks,
immediately change it to something else, or user data can be compromised

hub.db

hub.db.type

Type of database backend to use for the hub database.

The Hub requires a persistent database to function, and this lets you specify
where it should be stored.

The various options are:

	sqlite-pvc

Use an sqlite database kept on a persistent volume attached to the hub.

By default, this disk is dynamically created using the default
[dynamic provisioner]. You can customize how this disk is created / attached
by setting various properties under hub.db.pvc.

This is the default setting, and should work well for most cloud provider
deployments.

	sqlite-memory

Use an in-memory sqlite database. This should only be used for testing,
since the database is erased whenever the hub pod restarts - causing the hub
to lose all memory of users who had logged in before.

When using this for testing, make sure you delete all other objects that the
hub has created (such as user pods, user PVCs, etc) every time the hub restarts.
Otherwise you might run into errors about duplicate resources.

	mysql

Use an externally hosted mysql database.

You have to specify an sqlalchemy connection string for the mysql database you
want to connect to in hub.db.url if using this option.

The general format of the connection string is:

mysql+pymysql://<db-username>:<db-password>@<db-hostname>:<db-port>/<db-name>

The user specified in the connection string must have the rights to create
tables in the database specified.

Note that if you use this, you must also set hub.cookieSecret.

	postgres

Use an externally hosted postgres database.

You have to specify an sqlalchemy connection string for the postgres database you
want to connect to in hub.db.url if using this option.

The general format of the connection string is:

postgres+psycopg2://<db-username>:<db-password>@<db-hostname>:<db-port>/<db-name>

The user specified in the connection string must have the rights to create
tables in the database specified.

Note that if you use this, you must also set hub.cookieSecret.

hub.db.url

Connection string when hub.db.type is mysql or postgres.

See documentation for hub.db.type for more details on the format of this property.

hub.db.pvc

Customize the Persistent Volume Claim used when hub.db.type is sqlite-pvc.

hub.db.pvc.storage

Size of disk to request for the database disk.

hub.db.pvc.selector

Selectors to set for the PVC containing the sqlite database.

Useful when you are using a static PVC.

TODO: Link to pvc selector docs.

hub.db.pvc.annotations

Annotations to apply to the PVC containing the sqlite database.

TODO: Link to pvc annotations

hub.labels

Extra labels to add to the hub pod.

See the kubernetes documentation [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/]
to learn more about labels.

hub.extraEnv

Extra environment variables that should be set for the hub pod.

A list of EnvVar [https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.9/#envvar-v1-core]
objects.

These are usually used in two circumstances:

	Passing parameters to some custom code specified with extraConfig

	Passing parameters to an authenticator or spawner that can be directly customized
by environment variables (rarer)

hub.fsGid

The gid the hub process should be using when touching any volumes mounted.
Use this only if you are building your own image & know that a group with this gid exists inside the hub container! Advanced feature, handle with care!
Defaults to 1000, which is the gid of the jovyan user that is present in the default hub image.

hub.uid

The UID the hub process should be running as.
Use this only if you are building your own image & know that a user with this uid exists inside the hub container! Advanced feature, handle with care!
Defaults to 1000, which is the uid of the jovyan user that is present in the default hub image.

singleuser

Options for customizing the environment that is provided to the users after they log in.

singleuser.imagePullPolicy

Set the imagePullPolicy on the singleuser pods that are spun up by the hub.

See the kubernetes docs [https://kubernetes.io/docs/concepts/containers/images/#updating-images]
for more info on what the values mean.

singleuser.image

Set custom image name / tag used for spawned users.

This image is used to launch the pod for each user.

singleuser.image.tag

The tag of the image to use.

This is the value after the : in your full image name.

singleuser.image.name

Name of the image, without the tag.

Examples:

	yuvipanda/wikimedia-hub-user

	gcr.io/my-project/my-user-image

singleuser.cpu

Set CPU limits & guarantees that are enforced for each user.
See: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

singleuser.cpu.limit

singleuser.cpu.guarantee

singleuser.imagePullSecret

Create a custom image pull secret used for spawned users.

This secret is created in the same namespace as your jupyterhub deployment and will be used to pull your single user image.

singleuser.imagePullSecret.password

Password of the user you want to use to connect to your private registry.

Examples:

	plaintextpassword

	abc123SECRETzyx098

singleuser.imagePullSecret.registry

Name of the private registry you want to create a credential set for.

Examples:

	private.jfrog.io

	alexmorreale.privatereg.net

singleuser.imagePullSecret.username

Name of the user you want to use to connect to your private registry.

Examples:

	alexmorreale

	alex@pfc.com

singleuser.memory

Set Memory limits & guarantees that are enforced for each user.
See: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

singleuser.memory.limit

singleuser.memory.guarantee

auth

auth.state

auth.state.enabled

Enable persisting auth_state (if available).
See: http://jupyterhub.readthedocs.io/en/latest/api/auth.html

auth.state.cryptoKey

auth_state will be encrypted and stored in the Hub’s database. This can include things like authentication tokens, etc. to be passed to Spawners as environment variables.
Encrypting auth_state requires the cryptography package.
It must contain one (or more, separated by ;) 32B encryption keys. These can be either base64 or hex-encoded.
The JUPYTERHUB_CRYPT_KEY environment variable for the hub pod is set using this entry.

This can be generated with openssl rand -hex 32.

If encryption is unavailable, auth_state cannot be persisted.

 Tips and command snippets
 Official JupyterHub and Project Jupyter Documentation

 Previous
 Next

Official JupyterHub and Project Jupyter Documentation

	The JupyterHub Documentation [https://jupyterhub.readthedocs.io/en/latest/]
provides information about JupyterHub itself (not the Kubernetes deployment).

	Binder [https://mybinder.org] allows users to create sharable computational
environments on-the-fly. It makes heavy use of JupyterHub.

	The 2016 JupyterHub Workshop [https://github.com/jupyter-resources/jupyterhub-2016-workshop]
was an informal gathering to share experience in deploying JupyterHub for various
use-cases, including teaching and high-performance computing.

 Helm Chart Configuration Reference
 Tools used in a JupyterHub Deployment

 Previous
 Next

Tools used in a JupyterHub Deployment

JupyterHub is meant to connect with many tools in the world of
cloud computing and container technology. This page describes these
tools in greater detail in order to provide some more contextual
information.

Cloud Computing Providers

This is whatever will run the actual computation. Generally it means a
company, university server, or some other organization that hosts computational
resources that can be accessed remotely. JupyterHub will run on these
computational resources, meaning that users will also be operating on these
resources if they’re interacting with your JupyterHub.

They provide the following things:

	Computing

	Disk space

	Networking (both internal and external)

	Creating, resizing, and deleting clusters

Some of these organizations are companies
(e.g., Google [https://cloud.google.com/]), though JupyterHub
will work fine with university clusters or custom cluster deployments as well.
For these materials, any cluster with Kubernetes installed will work
with JupyterHub.

More information about setting up accounts services with cloud providers
can be found here.

Container Technology

Container technology is essentially the idea of bundling all of the
necessary components to run a piece of software. There are many ways
to do this, but one that we’ll focus on is called Docker. Here are
the main concepts of Docker:

Container Image

Container images contain the dependencies required to run your code.
This includes everything, all the way down to the operating
system itself. It also includes things like the filesystem on which
your code runs, which might include data etc. Containers are also
portable, meaning that you can exactly recreate the computational
environment to run your code on almost any machine.

In Docker, images are described as layers, as in layers of dependencies.
For example, say you want to build a container that runs scikit-learn.
This has a dependency on Python, so you have two layers: one for
python, and another that inherits the python layer and adds the extra
piece of scikit-learn. Moreover, that base python layer needs an
operating system to run on, so now you have three layers:
ubuntu -> python -> scikit-learn. You get the idea. The beauty of this
is that it means you can share base layers between images. This
means that if you have many different images that all require
ubuntu, you don’t need to have many copies of ubuntu lying around.

Images can be created from many things. If you’re using Docker, the basic
way to do this is with a Dockerfile.
This is essentially a list of instructions that tells
Docker how to create an image. It might tell Docker which base layers
you want to include in an image, as well as some extra dependencies that
you need in the image. Think of it like a recipe that tells Docker how
to create an image.

Containers

You can “run” a container image, and it creates a container for you.
A container is a particular instantiation of a container image. This means
that it actually exists on a computer. It is a self-contained
computational environment that is constructed according to the layers
that are inside of the Container Image. However, because it is now
running on the computer, it can do other useful things like talk to other
Docker containers or communicate via the internet.

Kubernetes

Kubernetes [https://kubernetes.io/] is a service that runs on cloud
infrastructures. It provides a single point of contact with the machinery
of your cluster deployment, and allows a user to specify the computational
requirements that they need (e.g., how many machines, how many CPUs
per machine, how much RAM). Then, it handles the resources on the cluster and
ensures that these resources are always available. If something goes down,
kubernetes will try to automatically bring it back up.

Kubernetes can only manage the computing resources that it is
given. This means that it generally can not create new resources on its
own (with the exception of disk space).

The following sections describe some objects in Kubernetes that are
most relevant for JupyterHub.

Processes

Are any program that is running on a machine. For example,
a Jupyter Notebook creates several processes that handle the
execution of code and the display in the browser. This isn’t
technically a Kubernetes object, since literally any computer has
processes that run on it, but Kubernetes does keep track of running
processes in order to ensure that they remain running if needed.

Pods

Pods are essentially a collection of one or more containers that
run together. You can think of them as a way of combining containers
that, as a group, accomplish some goal.

For example, say you want to create a web server that is open to the
world, but you also want authentication so that only a select group
of users can access it. You could use a single pod with two containers.

	One that does the authentication. It would have something like Apache
specified in its container image, and would be connected to the
outside world.

	One that receives information from the authentication container, and
does something fancy with it (maybe it runs a python process).

This is useful because it lets you compatmentalize the components of the
service that you want to run, which makes things easier to manage and
keeps things more stable.

For more information about pods, see the
Kubernetes documentation about pods [https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/].

Deployments

A deployment is a collection of pods on kubernetes. It is how kubernetes
knows exactly what containers and what machines need to be running at all
times. For example, if you have two pods: one that does the authenticating
described above, and another that manages a database, you can specify both
in a deployment.

Kubernetes will ensure that both pods are active, and if
one goes down then it will try to re-create it. It does this by continually
checking the current state of the pods, and then comparing this with the
original specification of the deployment. If there are differences between
the current state vs. the specification of the deployment, Kubernetes will
attempt to make changes until the current state matches the specification.

For more information about deployments, see the
Kubernetes documentation about deployment [https://kubernetes.io/docs/concepts/workloads/controllers/deployment/].

Note

Users don’t generally “create” deployments directly, they are
instead generated from a set of instructions that are sent to Kubernetes.
We’ll cover this in the section on “Helm”.

Service

A service is simply a stable way of referring to a deployment. Kubernetes
is all about intelligently handling dynamic and quickly-changing
computational environments. This means that the VMs running your pods may change,
IP addresses will be different, etc. However you don’t want to have to
re-orient yourself every time this happens. A Kubernetes service keeps
track of all these changes on the backend, and provides a single address
to manage your deployment.

For more information about services, see the
Kubernetes documentation about services [https://kubernetes.io/docs/concepts/services-networking/service/].

Namespace

Finally, a namespace [https://kubernetes.io/docs/tasks/administer-cluster/namespaces/]
defines a collection of objects in Kubernetes. It
is generally the most “high-level” of the groups we’ve discussed thus far.
For example, a namespace could be a single class running with JupyterHub.

For more information about namespaces, see the
Kubernetes documentation on namespaces [https://kubernetes.io/docs/tasks/administer-cluster/namespaces/].

Persistent Volume Claim

Persistent Volume Claims are a way to have persistent storage without
being tied down to one specific computer or machine. Kubernetes is
about that flexibility, and that means that we don’t want to lock ourselves
in to a particular operating system just because our files are already
on it. Persistent Volume Claims help deal with this problem by knowing
how to convert files between disk types (e.g., AWS vs. Google disks).

For more information on Persistent Volume Claims, see the
Kubernetes documentation on persistent volumes [https://kubernetes.io/docs/concepts/storage/persistent-volumes/].

Helm

Helm [https://helm.sh/] is a way of specifying kubernetes objects
with a standard template.

Charts

The way that Helm controls kubernetes is with templates of structured
information that specify some computational requirements.
These templates are called “charts”, or “helm charts”. They contain
all of the necessary information for kubernetes to generate:

	a deployment object

	a service object

	a persistent volume object for a deployment.

	collections of the above components

They can be installed into a namespace, which causes kubernetes to
begin deploying the objects above into that namespace.

Charts have both names and versions, which means that you can easily
update them and build off of them. There are
community maintained charts [https://github.com/kubernetes/charts/tree/master/stable]
available, and we use a chart to install and upgrade JupyterHub in
this guide. In our case, the helm chart is a file called config.yaml.

Releases

A release is basically a specific instantiation of a helmchart inserted
into a particular namespace. If you’d like to upgrade your
kubernetes deployment (say, by changing the amount of RAM that each
user should get), then you can change the helm chart, then re-deploy
it to your kubernetes cluster. This generates a new version of the release.

JupyterHub

JupyterHub is a way of utilizing the components above in order to
provide computational environments that users can access remotely.
It exists as two kubernetes deployments, Proxy and Hub, each of which has
one pod. Each deployment accomplishes some task that, together, make up JupyterHub.
Finally, the output of JupyterHub is a user pod, which specifies the
computational environment in which a single user will operate. So
essentially a JupyterHub is a collection of:

	Pods that contain the JupyterHub Machinery

	A bunch of user pods that are constantly being created or destroyed.

Below we’ll describe the primary JupyterHub pods.

Proxy Pod

This is the user-facing pod. It provides the IP address that people will
go to in order to access JupyterHub. When a new users goes to this pod,
it will decide whether to:

	send that user to the Hub pod, which will create a container for that
user, or

	if that user’s container already exists, send them directly to that
container instead.

Information about the user’s identity is stored as a cookie on their
computer. This is how the proxy pod knows whether a user already has
a running container.

Hub Pod

Receives traffic from the proxy pod. It has 3 main running processes:

	An authenticator, which can verify a user’s account. It also contains a
process.

	A “KubeSpawner” that talks to the kubernetes API and tells it to spawn
pods for users if one doesn’t already exist. KubeSpawner will tell
kubernetes to create a pod for a new user, then it will tell the
the Proxy Pod that the user’s pod has been created.

	An admin panel that has information about who has pods created, and
what kind of usage exists on the cluster.

 Official JupyterHub and Project Jupyter Documentation
 Glossary

 Previous

Glossary

A partial glossary of terms used in this guide. For more complete
descriptions of the components in JupyterHub, see Tools used in a JupyterHub Deployment.
Here we try to keep the definition as
succinct and relevant as possible, and provide links to learn more details.

	admin user

	A user who can access the JupyterHub admin panel. They can start/stop user
pods, and potentially access their notebooks.

	authenticator [http://jupyterhub.readthedocs.io/en/latest/reference/authenticators.html]

	The way in which users are authenticated to log into JupyterHub. There
are many authenticators available, like GitHub, Google, MediaWiki,
Dummy (anyone can log in), etc.

	culler

	A separate process that stops the user pods of users who have not been
active in a configured interval.

	docker image

	A docker image is similar to a recipe that Docker can use to build
a working space which gives users the tools, libraries, and capabilities to
be productive.

	environment variables [https://en.wikipedia.org/wiki/Environment_variable]

	A set of named values that can affect the way running processes will
behave on a computer. Some common examples are PATH, HOME, and
EDITOR.

	persistent storage

	A filesystem attached to a user pod that allows the user to store
notebooks and files that persist across multiple logins.

	repo2docker [https://github.com/jupyter/repo2docker]

	A tool which lets you quickly convert a GitHub repository into a Docker
image that can be used as a base for your JupyterHub instance.

 Tools used in a JupyterHub Deployment

Index

 A
 | C
 | D
 | E
 | P
 | R

A

 	
 	admin user

 	
 	authenticator

C

 	
 	culler

D

 	
 	docker image

E

 	
 	environment variables

P

 	
 	persistent storage

R

 	
 	repo2docker

Setting up EFS storage on AWS

ElasticFileSystem is distributed file system which speaks the NFS protocol. It is rumored to be a GlusterFS fork behind the scenes at AWS.

Drawbacks:

	Setting permissions on persistent volumes is not nailed down in the kubernetes spec yet. This adds some complications we will discuss later.

	A crafty user may be able to contact the EFS server directly and read other user’s files depending on how the system is setup.

Procedure:

	Setting up an EFS volume

Go through the EFS setup wizard in AWS (in the future this part may be scripted). The new EFS volume must be in
the same VPC as your cluster. This can be changed in the AWS settings after it has been created.

Next, create a new security group for NFS traffic (target other instances in that group). Add a rule for incoming NFS traffic to the node security group and to the master security group. Change the EFS volume to use that security group.

To verify that your EFS volume is working correctly, ssh into one of the master nodes and su to root. Next,
follow the steps on the EFS console page for mounting your NFS volume. The DNS entry may take a few minutes to show up.

Once the mount succeeds, unmount it and disconnect from the admin node.

	Configuring Kubernetes to understand your EFS volume

Create test_efs.yaml:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: efs-persist
spec:
 capacity:
 storage: 123Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: fs-${EFS_ID}.efs.us-east-1.amazonaws.com
 path: "/"

Create test_efs_claim.yaml:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: efs-persist
spec:
 storageClassName: ""
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 11Gi

The sizes in these files are misleading. There is no quota enforced with EFS. In the
future we want to set the efs PersistentVolume size to something ridiculously large
like 8EiB and the PersistentVolumeClaim to 10GB. As far as we know at the moment, these sizes don’t matter.

A PersistentVolume defines a service which can perform a mount inside of a container. The
PersistentVolumeClaim is a way of reserving a portion of the PersistentVolume and potentially
locking access to it.

The storageClassName setting looks innocuous, but it is incredibly critical. The only non storage
class PV in the cluster is the one we defined above. In the future we should tag different PV’s
and use tag filters in the PVC instead of relying on a default of “”.

We are going to configure jupyterhub to use the same “static” claim among all of the containers. This
means that all of our users will be using the same EFS share which should be able to scale as high as we need.

This part is a little different than the standard guide. We need to create these PV’s and PVC’s in the
namespace that our app will live in. Choose a namespace (this will be the same as the namespace you will
use in the helm install step later on)

Run these commands to setup your namespace and storage:

kubectl create namespace <your namespace>
kubectl --namespace=<your namespace> apply -f test_efs.yaml
kubectl --namespace=<your namespace> apply -f test_efs_claim.yaml

I don’t know if the PV needs to be in the namespace, but the arg does not seem to hurt anything. The PVC must be in the namespace or stuff will break in weird ways.

	Configuring your application to use EFS as it’s backing storage

We now add the following to config.yaml:

singleuser:
 image:
 name: jupyter/base-notebook
 tag: latest
 storage:
 type: "static"
 static:
 pvcName: "efs-persist"
 subPath: 'home/{username}'
 extraEnv:
 CHOWN_HOME: 'yes'
 uid: 0
 fsGid: 0
 cmd: "start-singleuser.sh"

The image setting overrides the default pinned jh base image since it has not yet been updated
to include the CHOWN_HOME setting. This will be fixed in Z2JH 0.7.

type static tells jh not to use a storage class and instead use a PVC defined below.

pvcName matches the claim name we specified before

subPath tells where on the supplied storage the mount point should be. In this case it will
be “$EFS_ROOT/home/{username}”

It turns out there is a bug in jupyterhub where the default subPath does not work, and setting the
subPath to “{username}” breaks in the same way.

The extraEnv section set’s environmental variables before trying to start jupyterhub inside of the user’s
container. CHOWN_HOME is needed to force the ownership change of the home directory.

Kubernetes is still conflicted if a uid and a gid should be passed in to change how the directory is mounted
inside of the container. What we do for now is auto-chown the directory before jupyterhub has been started.

The UID/fsGID is necessary to force the container to run the start-singleuser.sh as root. Once
start-singleuser.sh has properly changed the ownership of the directory, it su’s to the jupyterhub user.

Step Zero: Kubernetes on Amazon Web Services (AWS) with Elastic Container with Kubernetes (EKS)

AWS recently released native support for Kubernetes. Note: This is only available in US West (Oregon) (us-west-2) and
US East (N. Virginia) (us-east-1)

This guide uses AWS to set up a cluster. This mirrors the steps found at “Getting Started with Amazon EKS” [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html] with some details filled in that are absent

Procedure:

	Create a IAM Role for EKS Service Role.

It should have the following policies

	AmazonEKSClusterPolicy

	AmazonEKSServicePolicy

(From the user interface, select EKS as the service, then follow the default steps)

	Create a VPC if you don’t already have one.

This step has a lot of variability so it is left to the user. However, one deployment can be found at “Getting Started with Amazon EKS” [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html], under Create your Amazon EKS Cluster VPC

	Create a Security Group for the EKS Control Plane to use

You do not need to set any permissions on this. The steps below will automatically define access control between the EKS Control Planne and the individual nodes

	Create your EKS cluster (using the user interface)

Use the IAM Role in step 1 and Security Group defined in step 3. The cluster name is going to be used throughout. We’ll use Z2JHKubernetesCluster as an example.

	Install kubectl and heptio-authenticator-aws

Refer to “Getting Started with Amazon EKS” [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html] on Configure kubectl for Amazon EKS

	Configure kubeconfig

Also see “Getting Started with Amazon EKS” [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html] Step 2: Configure kubectl for Amazon EKS

From the user interface on AWS you can retrieve the endpoint-url, base64-encoded-ca-cert. cluster-name is the name given in step 4. If you are using profiles in your AWS configuration, you can uncomment the env block and specify your profile as aws-profile.:

apiVersion: v1
clusters:
- cluster:
 server: <endpoint-url>
 certificate-authority-data: <base64-encoded-ca-cert>
 name: kubernetes
 contexts:
 - context:
 cluster: kubernetes
 user: aws
 name: aws
 current-context: aws
 kind: Config
 preferences: {}
 users:
 - name: aws
 user:
 exec:
 apiVersion: client.authentication.k8s.io/v1alpha1
 command: heptio-authenticator-aws
 args:
 - "token"
 - "-i"
 - "<cluster-name>"
 # - "-r"
 # - "<role-arn>"
 # env:
 # - name: AWS_PROFILE
 # value: "<aws-profile>"

	Verify kubectl works

kubectl get svc

should return kubernetes and ClusterIP

	Create the nodes using CloudFormation

See “Getting Started with Amazon EKS” [https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html] Step 3: Launch and Configure Amazon EKS Worker Nodes

Warning if you are endeavoring to deploy on a private network, the cloudformation template creates a public IP for each worker node though there is no route to get there if you specified only private subnets. Regardless, if you wish to correct this, you can edit the cloudformation template by changing Resources.NodeLaunchConfig.Properties.AssociatePublicIpAddress from 'true' to 'false'

	Create a AWS authentication ConfigMap

This is necessary for the workers to find the master plane.
Download aws-auth-cm.yaml file.

curl -O https://amazon-eks.s3-us-west-2.amazonaws.com/1.10.3/2018-06-05/aws-auth-cm.yaml

or copy it:

apiVersion: v1
kind: ConfigMap
metadata:
name: aws-auth
namespace: kube-system
data:
mapRoles: |
- rolearn: <ARN of instance role (not instance profile)>
 username: system:node:{{EC2PrivateDNSName}}
 groups:
 - system:bootstrappers
 - system:nodes

To find the ARN of the instance role, you can pull up any node created in Step 8, the nodes will be of the format <Cluster Name>-<NodeName>-Node, for example Z2JHKubernetesCluster-Worker-Node
Click on the IAM Role for that node, you should see a Role ARN and Instance Profile ARNs. Use the Role ARN in the above yaml file.

	Then run

	kubectl apply -f aws-auth-cm.yaml

	Preparing authenticator for Helm

Note

There might be a better way to configure this

Since the described helm deployment in the next section uses RBAC, system:anonymous user must be given access to administer the cluster. This can be done by the following command

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

 _static/images/cloud_sdk_landing.png
Carol

00 //O Cloud SDK | Google Cloud P|- x \\

& C' | @ Secure https://cloud.google.com/sdk/?hl=en_US#download ¥ @ "El a
) Google Cloud Platform Q search Console ~ } ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners CONTACT SALES

CLOUD SDK

Command-line interface for Google Cloud Platform products and services

\':-) INSTALL FOR MAC 0S X VIEW DOCUMENTATION

Essential Tools for Cloud Platform

The Cloud SDK is a set of tools for Cloud Platform. It contains gcloud, gsutil, and bg, which you can use to access

Google Compute Engine, Google Cloud Storage, Google BigQuery, and other products and services from the
command-line. You can run these tools interactively or in your automated scripts. @ 9 @

Manage Virtual Machine Instances

’ F gcloud makes it easy to manage your fleet of virtual machines on Compute Engine - everything from creating, starting
and managing VM instances to rolling your own VM images. You can also use gcloud to make SSH connections to

your instances.

_static/images/container_engine_location.jpg
&) Google Cloud Platform

ainer clu
f4 Home

ner cluster
APT APl Manager ame ~ Z

) c3s u
B= Billing

{8, Cloud Launcher

.3 Support

O IAM&Admin

COMPUTE
-®- AppEngine
{sf Compute Engi

@ Container Engine

_static/images/authenticate_success.png
® © ® | %) qQuickstart for Mac OS X | Clc X / £) You are now authenticated wit x Carol

& C' @ Secure https://cloud.google.com/sdk/auth_success % @ fé a
{) Google Cloud Platform Q search Console ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners
Contents
Cloud SDK Information about

command-line tools and

SEND FEEDBACK client libraries

You are now authenticated with the Google S
ClOUd SDKI Feedback

The authentication flow has completed successfully. You may close this window, or check out the resources
below.

Information about commmand-line tools and client libraries

To learn more about gcloud command-line commands, see the gcloud Tool Guide.

For further information about the command-line tools for Google App Engine, Compute Engine, Cloud
Storage, BigQuery, Cloud SQL and Cloud DNS (which are all bundled with Cloud SDK), see Accessing Services
with gcloud.

If you are a client application developer and want to find out more about accessing Google Cloud Platform
services with a programming language or framework, see Google APIs Client Libraries.

Tutorials

Here are some links to help you get started with Google Cloud Platform services.

¢ Build a web app and host it on Google App Engine.
To get started, follow the walkthrough in the Google Cloud Platform Console to Try Google App Engine

INPSYY)

_static/images/cloud_sdk_doc_landing.png
LN ///) Google Cloud SDK Document: X \\\

Carol
& C' @ Secure https://cloud.google.com/sdk/docs/ ¥ @ ('l_‘, a :
O Google Cloud Platform Q Search Console 3 ‘
Why Google Products Solutions Launcher Pricing Customers Documentation Support Partners CONTACT SALES
Cloud SDK Contents
Cloud SDK

Install the latest Cloud

Product Overview Tools version (147.0.0)

entation Google Cloud SDK Documentation

SEND FEEDBACK

Install the latest Google
Cloud Client Libraries

Quickstarts More information
All Quickstarts Google Cloud SDK is a set of tools that you can use to manage resources and applications hosted on Google Cloud Platform.
. These include the gcloud, gsutil,and bq command line tools.
For Linux

For Debian and Ubuntu
For Red Hat and CentOS
For Mac 0S X

Install the latest Cloud Tools version (147.0.0)

For Windows
LINUX DEBIAN/UBUNTU RED HAT/CENTOS MAC 0S X WINDOWS
How-to Guides
All How-to Guides
Installing the SDK

1. Make sure that Python 2.7.9 or later is installed on your system.

Setting up the SDK python -V
Managing SDK Components
Using gcloud Interactive Shell Z& 2. Download one of the following:

Scripting gcloud Commands

PLATFORM PACKAGE SIZE SHA1 CHECKSUM
APIs & Reference
geloud Reference Mac 0S X google-cloud-sdk- 13.4 e2echd294801721a7cc97616ebfae191f3800fbf
(x86_64) 147.0.0-darwin- MB

Google Cloud Client Libraries
x86_64.tar.gz

Concepts Mac 0S X google-cloud-sdk- 13.4 2a029b65e0c73749f58bbf1af809249c7345caa7
All Concepts (x86) 147.0.0-darwin- MB
o x86.tar.gz

_static/images/gcloud_init.png
[04:42:00] carol@cw-pro in ~ $ gcloud 1init
Welcome! This command will take you through the configuration of gcloud.

Your current configuration has been set to: [default]

You can skip diagnostics next time by using the following flag:
gcloud init --skip-diagnostics

Network diagnostic detects and fixes local network connection issues.
Checking network connection...done.

Reachability Check passed.

Network diagnostic (1/1 checks) passed.

You must log in to continue. Would you like to log in (Y/n)?

_static/images/install_sdk1.png
[04:36:09] carol@cw-pro in ~ $ python -V

Python 2.7.13 Continuum Analytics, Inc.

[04:36:13] carol@cw-pro in ~ $./code/google-cloud-sdk/install.sh
Welcome to the Google Cloud SDK!

To help improve the quality of this product, we collect anonymized usage data
and anonymized stacktraces when crashes are encountered; additional information
is available at <https://cloud.google.com/sdk/usage-statistics>. You may choose
to opt out of this collection now (by choosing 'N' at the below prompt), or at
any time in the future by running the following command:

gcloud config set disable_usage_reporting true
Do you want to help improve the Google Cloud SDK (Y/n)? n

Your current Cloud SDK version dis: 147.0.0
The latest available version is: 147.0.0

Components
Status Name D Size

Not Installed App Engine Go Extensions app-engine-go 47.7 MiB
Not Installed Bigtable Command Line Tool cbt 3.9 MiB
Not Installed Cloud Datalab Command Line Tool datalab < 1 MiB
Not Installed Cloud Datastore Emulator cloud-datastore-emulator 15.4 MiB
Not Installed Cloud Datastore Emulator (Legacy) gcd-emulator 38.1 MiB
Not Installed Cloud Pub/Sub Emulator pubsub-emulator 21.0 MiB
Not Installed Emulator Reverse Proxy emulator-reverse-proxy 56.8 MiB
Not Installed Google Container Registry's Docker credential helper docker-credential-gcr 3.4 MiB
Not Installed gcloud Alpha Commands alpha < 1 MiB
Not Installed gcloud Beta Commands beta < 1 MiB
Not Installed gcloud app Java Extensions app-engine-java 128.6 MiB
Not Installed gcloud app PHP Extensions (Mac 0S X) app-engine-php-darwin 21.9 MiB
Not Installed gcloud app Python Extensions app-engine-python 7.2 MiB
Not Installed kubectl kubectl 11.4 MiB
Installed BigQuery Command Line Tool bq < 1 MiB
Installed Cloud SDK Core Libraries core 5.6 MiB
Installed Cloud Storage Command Line Tool gsutil 2.8 MiB
Installed Default set of gcloud commands gcloud

To install or remove components at your current SDK version [147.0.0], run:
$ gcloud components install COMPONENT_ID
$ gcloud components remove COMPONENT_ID

To update your SDK installation to the latest version [147.0.0], run:

$ gcloud components update

Modify profile to update your $PATH and enable shell command
completion? (Y/n)?

_static/images/gcloud_cluster_created.png
[04:55:39] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

ERROR: (gcloud.container.clusters.create) ResponseError: code=503, message=Project alert-result-161014 1is not fully
initialized with the default service accounts. Please try again later.

[04:55:48] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

Creating cluster jhub...done.

Created [https://container.googleapis.com/vl/projects/alert-result-161014/zones/us-centrall-a/clusters/jhub].
kubeconfig entry generated for jhub.

NAME ZONE MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

jhub us-centrall-a 1.5.3 104.154.128.254 nl-standard-1 1.5.3 3 RUNNING

[05:04:25] carol@cw-pro in ~ $

_static/images/gcloud_container_clusters_create.png
[04:55:39] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a
ERROR: (gcloud.container.clusters.create) ResponseError: code=503, message=Project alert-result-161014 is not fully

initialized with the default service accounts. Please try again later.
[04:55:48] carol@cw-pro in ~ $ gcloud container clusters create jhub --num-nodes=3 --zone=us-centrall-a

Creating cluster jhub..._

_static/images/service_account_compute_engine.png
® © ® /¢ Daring Fireball: Markdown Sy x (5] Setting up your own Jupytert x " © 1AM & Admin - My First Project x |\ Carol
\

&« C' @ Secure https://console.cloud.google.com/iam-admin/serviceaccounts/project?project=alert-result-161014 * ® G a :
ﬁ You have $300.00 in credit and 357 days left in your free trial. DISMISS UPGRADE

Google Cloud Platform My First Project ~

B 1AM & Admin

= All projects

+® 1AM

|=)] Quotas

oz Service accounts

Q Labels

%)) GCP Privacy & Security
& Settings

9 Encryption Keys

@ |dentity-Aware Proxy

<l

Service Accounts CREATE SERVICE ACCOUNT @ DELETE +2 PERMISSIONS

Service accounts for project "My First Project"

A service account represents a Google Cloud service identity, such as code running on Compute Engine VMs, App Engine apps, or systems running outside Google. Learn more

Q, Find a service account

v/ Service account name ~ Service account ID Key ID Key creation date Options
M 3] Compute Engine default service 874648222803- No keys :
account compute@developer.gserviceaccount.com

_static/images/azure/cli_start.png
d docs

@ Clone (il Delete

nav.xhtml

 Table of Contents

 		
 Zero to JupyterHub

 		
 Creating a Kubernetes Cluster

 		
 Step Zero: Kubernetes on Google Cloud

 		
 Step Zero: Kubernetes on Microsoft Azure Container Service (AKS)

 		
 Step Zero: Kubernetes on Amazon Web Services (AWS)

 		
 JupyterHub on Red Hat OpenShift

 		
 Getting started with JupyterHub

 		
 Verifying JupyterHub dependencies

 		
 Setting up Helm

 		
 Installation

 		
 Initialization

 		
 Verify

 		
 Secure Helm

 		
 Next Step

 		
 Setting up JupyterHub

 		
 Prepare configuration file

 		
 Install JupyterHub

 		
 Turning Off JupyterHub and Computational Resources

 		
 For all cloud providers

 		
 Delete the helm namespace

 		
 Google Cloud Platform

 		
 Microsoft Azure AKS

 		
 Amazon Web Services (AWS)

 		
 Extending your JupyterHub setup

 		
 Applying configuration changes

 		
 Customizing the User Environment

 		
 Use an existing Docker image

 		
 Build a custom Docker image with repo2docker

 		
 Use JupyterLab by default

 		
 Set environment variables

 		
 Pre-populating user’s $HOME directory with files

 		
 Using nbgitpuller to synchronize a folder

 		
 Allow users to create their own conda environments

 		
 User Resources

 		
 Set user memory and CPU guarantees / limits

 		
 Modifying user storage type and size

 		
 Expanding and contracting the size of your cluster

 		
 Google Cloud Platform

 		
 User storage in JupyterHub

 		
 How can this process break down?

 		
 Configuration

 		
 Type of storage provisioned

 		
 Size of storage provisioned

 		
 Turn off per-user persistent storage

 		
 User Management

 		
 Culling user pods

 		
 Admin Users

 		
 Authenticating Users

 		
 The JupyterHub Architecture

 		
 Debugging Kubernetes

 		
 Debugging commands

 		
 kubectl get pod

 		
 kubectl describe pod

 		
 kubectl logs

 		
 Troubleshooting Examples

 		
 Hub fails to start

 		
 Authentication

 		
 Authenticating with OAuth2

 		
 GitHub

 		
 Google

 		
 CILogon

 		
 Globus

 		
 OpenID Connect

 		
 Full Example of Google OAuth2

 		
 Authenticating with LDAP

 		
 Example LDAP Configuration

 		
 Example Active Directory Configuration

 		
 Adding a Whitelist

 		
 Speed and Optimization

 		
 Picking a Scheduler Strategy

 		
 Spread

 		
 Pack

 		
 Pre-pulling

 		
 Hook - image pulling before upgrades

 		
 Continuous - image pulling for added nodes

 		
 Pre-pulling additional images

 		
 Security

 		
 Reporting a security issue

 		
 HTTPS

 		
 Set up your domain

 		
 Set up automatic HTTPS

 		
 Set up manual HTTPS

 		
 Off-loading SSL to a Load Balancer

 		
 Confirm that your domain is running HTTPS

 		
 Secure access to Helm

 		
 Audit Cloud Metadata server access

 		
 Delete the Kubernetes Dashboard

 		
 Use Role Based Access Control (RBAC)

 		
 Kubernetes API Access

 		
 Kubernetes Network Policies

 		
 Enabling network policies

 		
 Upgrading your JupyterHub Kubernetes deployment

 		
 Major helm-chart upgrades

 		
 v0.5 to v0.6

 		
 v0.4 to v0.5

 		
 Subtopics

 		
 helm upgrade command

 		
 Database

 		
 Role based access control

 		
 Custom Docker Images: JupyterHub version match

 		
 Troubleshooting

 		
 FAQ

 		
 I thought I had deleted my cloud resources, but they still show up. Why?

 		
 How does billing for this work?

 		
 Advanced Topics

 		
 Ingress

 		
 Ingress and Automatic HTTPS with kube-lego & Let’s Encrypt

 		
 Arbitrary extra code and configuration in jupyterhub_config.py

 		
 hub.extraConfig

 		
 hub.extraConfigMap

 		
 hub.extraEnv

 		
 hub.extraContainers

 		
 Picking a Scheduler Strategy

 		
 Spread

 		
 Pack

 		
 Pre-pulling Images for Faster Startup

 		
 Pre-pulling basics

 		
 Pre-pulling and changes in cluster size

 		
 Pre-pulling additional images

 		
 Appendix: Projecting deployment costs

 		
 Cost calculators for cloud providers

 		
 Factors influencing costs

 		
 Computational Resources

 		
 Users

 		
 User usage patterns

 		
 Interactive Cost Estimator (rough estimate)

 		
 Examples

 		
 Data 8

 		
 Community-authored documentation

 		
 Links to blog posts

 		
 Links to community project repos

 		
 Zero to JupyterHub Gallery of Deployments

 		
 Tips and command snippets

 		
 kubectl autocompletion

 		
 helm autocompletion

 		
 Managing kubectl contexts

 		
 Specifying a default namespace for a context

 		
 Using labels and selectors with kubectl

 		
 Asking for a more verbose or structured output

 		
 Helm Chart Configuration Reference

 		
 proxy

 		
 proxy.secretToken

 		
 hub

 		
 hub.extraConfig

 		
 hub.image

 		
 hub.imagePullPolicy

 		
 hub.cookieSecret

 		
 hub.db

 		
 hub.labels

 		
 hub.extraEnv

 		
 hub.fsGid

 		
 hub.uid

 		
 singleuser

 		
 singleuser.imagePullPolicy

 		
 singleuser.image

 		
 singleuser.cpu

 		
 singleuser.imagePullSecret

 		
 singleuser.memory

 		
 auth

 		
 auth.state

 		
 Official JupyterHub and Project Jupyter Documentation

 		
 Tools used in a JupyterHub Deployment

 		
 Cloud Computing Providers

 		
 Container Technology

 		
 Container Image

 		
 Containers

 		
 Kubernetes

 		
 Processes

 		
 Pods

 		
 Deployments

 		
 Service

 		
 Namespace

 		
 Persistent Volume Claim

 		
 Helm

 		
 Charts

 		
 Releases

 		
 JupyterHub

 		
 Proxy Pod

 		
 Hub Pod

 		
 Glossary

_static/images/logo/logo.png
——
Jupyterhu
< e’

_images/architecture.png
JupyterHub Architecture Cloud Volumes ‘ ‘

(high-level details)

Users

Data and 110

User flow

Trigger action

Image Registry

Provides persistent storage. Provides environment images

ROUTE INFO
SEND

SIGNED OUT
USER
REDIRECT

'VOLUME PROVIDE /
POD CREATE / CULL PODS
USER REDIRECT IF STALE
SIGNED IN USER *

REDIRECT

This user's pod
Kubernetes Cluster

_images/cli_start.png
d docs

@ Clone (il Delete

_static/images/google/start_interactive_cli.png
& Google Cloud Platform status

_images/start_interactive_cli.png
& Google Cloud Platform status

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/logo.png
——
Jupyterhu
< e’

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/authenticate.png
Carol

o0 //) Quickstart for Mac 0S X | Clc X \/*/ G Request for Permission x \
/ / Y

& C' @ Secure https://accounts.google.com/o/oauth2/auth?redirect_uri=http%3A%2F%2Flocalhost%3A8085%2F&prompt=select_account&response_type=... Yr @ a

willingc@gmail.com ~

Google

~ Google Cloud SDK would like to:

; Know who you are on Google @

; View your email address @

@ View and manage your Google Compute Engine @
resources

@ View and manage your applications deployed on @
Google App Engine

@ View and manage your data across Google Cloud @
Platform services

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can

change this and other Account Permissions at any time.
Deny m

_static/up.png

_static/images/architecture.png
JupyterHub Architecture Cloud Volumes ‘ ‘

(high-level details)

Users

Data and 110

User flow

Trigger action

Image Registry

Provides persistent storage. Provides environment images

ROUTE INFO
SEND

SIGNED OUT
USER
REDIRECT

'VOLUME PROVIDE /
POD CREATE / CULL PODS
USER REDIRECT IF STALE
SIGNED IN USER *

REDIRECT

This user's pod
Kubernetes Cluster

